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the meaning of a sentence is constructed from 
the meaning of its parts and the way in which 

they are combined 

2

(Cann, 1993)
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Enables robust generalization outside of 
prior experience

The deer ran across the road last night.

The chicken walked into town.

The deer walked into town.

I don’t like pears, I find them sinister.

apples

I don’t like apples, I find them sinister.
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Current Limitations

• They struggle to use new words in a compositional context (Lake and Baroni, 2018)

• Difficulty interpreting known words in new contexts (Keysers et al., 2020)

• Issues generalizing known words to new syntactic structures (Kim and Linzen, 
2020)
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Compositionality
Current Limitations

• Models may prefer memorization over generalization (Liška et al., 2018)

• Models may memorize sections of their input (Hupkes et al., 2019)

• Limited memory may be key to why humans arrive at robust solutions 
(Griffiths, 2020) 
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Can we inhibit these models’ ability to memorize?

State of the art neural models struggle to 
generalize outside of their training distribution
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Subject Object

The sailor dusted a boy .
* sailor ( x _ 1 ) ; dust . agent ( x _ 2 , x _ 1 ) AND 
dust . theme ( x _ 2 , x _ 4 ) AND boy ( x _ 4 )

Novel Combination of Familiar 
Primitives and Grammatical Roles A hedgehog ate the cake. The baby liked the hedgehog. 

Deeper Recursion Emma said that Noah knew 
that the cat danced.

Emma said that Noah knew that 
Lucas saw that the cat danced. Sentential complements
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is it surprising that this is hard?
Underspecification & Supervised learning

• Data under-specifies for the generalizations that produced it    (Goodman, 1955)

• Models are trained on these tasks using supervised learning.

• Independent and Identically Distributed Assumption

• explicitly not met here.

• Underspecified data + Supervised learning may fail to consistently extract 
robust strategies

9



Improving Generalization
DG-MAML (Li et al., 2018)

10



Improving Generalization
DG-MAML (Li et al., 2018)

10

• if we know we’re going to be tested on something different, let’s train for that



Improving Generalization
DG-MAML (Li et al., 2018)

10

dataset

• if we know we’re going to be tested on something different, let’s train for that



Improving Generalization
DG-MAML (Li et al., 2018)

10

dataset

• if we know we’re going to be tested on something different, let’s train for that

no-embedding lots of embedding



Improving Generalization
DG-MAML (Li et al., 2018)

10

short longdataset

• if we know we’re going to be tested on something different, let’s train for that



Improving Generalization
DG-MAML (Li et al., 2018)

10

short long

I like the cat.

dataset

• if we know we’re going to be tested on something different, let’s train for that



Improving Generalization
DG-MAML (Li et al., 2018)

10

short long

I like the cat. I like the cat and the dog 
and the way that they 
seem to be friends.

dataset

• if we know we’re going to be tested on something different, let’s train for that



Improving Generalization
DG-MAML (Li et al., 2018)

10

short long

I like the cat. I like the cat and the dog 
and the way that they 
seem to be friends.

• if we know we’re going to be tested on something different, let’s train for that



Improving Generalization
DG-MAML (Li et al., 2018)

10

short long

I like the cat. I like the cat and the dog 
and the way that they 
seem to be friends.

TestTrain

• if we know we’re going to be tested on something different, let’s train for that



Improving Generalization
DG-MAML (Li et al., 2018)

10

short long

I like the cat. I like the cat and the dog 
and the way that they 
seem to be friends.

TestTrain

• if we know we’re going to be tested on something different, let’s train for that



Improving Generalization
DG-MAML (Li et al., 2018)

10

short long

I like the cat. I like the cat and the dog 
and the way that they 
seem to be friends.

TestTrain

Meta-Train

• if we know we’re going to be tested on something different, let’s train for that



Improving Generalization
DG-MAML (Li et al., 2018)

10

short long
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and the way that they 
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TestTrain

Meta-Train Meta-Test

• if we know we’re going to be tested on something different, let’s train for that
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Meta-Train

Possible 

Strategies

Meta-Test

Robust Strategies
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Improving Generalization
Prior Knowledge

• But this requires prior knowledge

• not of the test distribution, but of the family of distributions from which the 
test distribution will be drawn
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how can we help to resolve this  
underspecification more domain-generally?
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Domain-General Bias
DG-MAML

• DG-MAML presents a way to introduce a bias during training

• Whatever we put in the meta-test batch constrains our update step on meta-
train

Let’s use this to introduce a general bias 
rather than a task specific one

15
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Meta-Train

The girl changed a sandwich by the bed.

The sailor dusted a boy.

The penguin ate a donut.
Amelia gave Emma a strawberry.

A cat disintegrated a girl.
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• let’s introduce a bias that impairs the model’s ability to memorize whole 
sentences
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Meta-Train

The girl changed a sandwich by the bed.

The sailor dusted a boy.

Meta-TestUniform Sampling | Uni-MAMLLev Distance | Lev-MAMLConvolutional String Kernel | Str-MAMLPartial Tree Kernel | Tree-MAML

Mateo dusted a boy .
dust

A sandwich changed.

A block was changed by the girl.



Does inhibiting models’ memory 
improve generalization?
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58.6 64.4 64.964.8 66.7

Experiments
COGS Dataset
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Conclusions

• Biasing the model against memorization does improve generalization 
performance on COGS and SCAN

• Unlike more task specific methods this approach is model and in many cases 
data-set agnostic

• The design of the Meta-Test task allows for the design of the bias applied 
during training
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