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Semantic Parsing for Databases

database: concert singer

@ Show all countries and the number of singers in each country.
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saL |SELECT Country, count(*) FROM Singer GROUP BY Country }
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Task: translating natural language utterance to SQL queries.



Cross-Domain Text-to-SQL Parsing
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Cross-Lingual Cross-Domain Text-to-SQL Parsing

database: concert singer
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SELECT Status, avg(Population) FROM City GROUP BY Status]

Utterance and database schemas are
in different languages

In the left figure, utterances are in
Chinese whereas database schemas
are in English



Previous work: specialized models for schema linking

Mono-lingual Setting

@ {Show all countries and the number of singers in each country. J
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saL {SELECT Country, count(*) FROM Singer GROUP BY Country }

Cross-lingual Setting
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Can We Optimize for Domain
Generalization without Changing Models?

(for both mono- and cross-lingual settings)



Construct Virtual Tasks for



Meta-Learning Objective
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Meta-Learning Objective
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Meta-Learning Objective: DG-MANML
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Analysis of DG-MAINML

£maml (0)

[Li et al., 2018]
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Gradient Updates of
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Supervised Learning
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Datasets

Cross-Domain Cross-Lingual

Spider

Chinese Spider



Results on Spider

70

Exact-match accuracy (%)

Model

17



Results on Chinese Spider
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Analysis: In-Domain vs. Out-of-Domain

We create an in-domain setting from the Spider dataset.

* Does the parser struggle out-of-domain?
YES

In-domain vs. out-of-domain performance: 56.4% vs 78.2%

 Does DG-MAML hurt in-domain performance?

NO
DG-MAML leads to a modest improvement (+1.1%)
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Key Takeaways

* Meta-learning can be useful beyond few-shot learning; we show it can also
be used to promote domain generalization for semantic parsing.

 Without changing model architectures, DG-MANIL can boost the
performance of cross-domain parsers in mono— and cross-lingual settings.

e Code: https://github.com/berlino/tensor2struct-public

 Qurrecent work on extending DG-MAML for compositional generalization is
accepted by ACL2021
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Basic ldeas

* We aim at directly optimizing for domain generalization (DG) via a
meta-learning objective, dubbed

* By constructing a set of virtual cross-domain parsing tasks, the
objective encourage generalization to unseen domains in each task.
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DG-MAML Training Algorithm

Algorithm 1 DG-MAML Training Algorithm

Require: Training databases D * Given a a set of examples
ire: ' . from databases D
Require: Learning rate o
I: for step «+— 1 to 7T do

8: end for 29




DG-MAML Training Algorithm

Algorithm 1 DG-MAML Training Algorithm

Require: Training databases D * Given a a set of examples
. . | from databases D
Require: Learning rate o
I: for step «+— 1 to 7T do
2:  Sample a task 7 of (DI, D] ) from D

* We first sample a virtual
task from D

8: end for 23




DG-MAML Training Algorithm

Algorithm 1 DG-MAML Training Algorithm

Require: Training databases D
Require: Learning rate «v
I: for step <— 1to 7 do
2:  Sample a task 7 of (D], D] ) from D
3:  Sample mini-batch B from D]
4:  Sample mini-batch B] from D}

8: end for

* Given a a set of examples from
databases D

e We first sample a virtual task
from D

 Sample examples from virtual
source and target databases
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DG-MAML Training Algorithm

Algorithm 1 DG-MAML Training Algorithm

Require: Training databases D
Require: Learning rate «v
I: for step <— 1to 7 do

7:

2:

3:
4:
5

Sample a task 7 of (D], D] ) from D
Sample mini-batch B from D]
Sample mini-batch B; from D]
Meta-train update:

0 «— 60— aVelp:(0)
Compute meta-test objective:

L-(0) = Lp,(0) + Lp,(6)
Final Update:

0 < Update(0,VgL,(0))

8: end for

* Given a a set of examples from
databases D

e We first sample a virtual task
from D

e Sample examples from virtual
source and target databases

* Update parameters using a
MAML objective
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VIAML Objective

* Meta-Train: one step of SGD in the virtual source domains

0 «— 0 —aVeLlg,(0)

* Meta-Test: evaluate the parameters in the virtual target domains
/
‘C’Bt (9 )

* Final objective: joint loss on both virtual source and target domains

L(0) = Lp,(0) + Lp,(0)
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Objective

L(0) = Lp,(0)+ L5,(6')

Intuition:

* optimize towards the better source and target domain
performance simultaneously

 gradient step in the source domain should be beneficial to the
performance of the target domain as well.
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Objective vs. Supervised Learning

Lp,(0) + L5, (0") L5, (0) + Lp,(0)

Comparison:

* Supervised learning objective (right) does not pose any
constraints on the gradient update.

* MAML objective (/eft) can be viewed as a regularization of
gradient updates.
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Analysis of

First-order Taylor series expansion:

L(0) =Lp,(0) + L5,(0')
2538(9) + £Bz(9 — OZVQEBS(O))
%ﬁgs(e) + »CBt(H) — O((VQLZBS(B) . VHEBS(H))

DG-MAML further tries to maximize Vg Lp.(0)-V¢Lp (@), the dot prod-
uct between the gradients of source and target domain. That is, it en-
courages gradients to generalize between source and target domain within

each task 7.
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First-Order Approximation:

The gradient of DG-MAML requires second derivatives:

VoLl (0) :VOH,VH’LBZ(O,) + VoLp (0)
=(I — aVyLp,(0))VeLlp,(0') + VeLls,(0)

Inspired by Reptile, we consider the alternative of ignoring this second-
order term and simply assume that V40’ = I.
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First-Order Approximation: DG-FIMAML

Lmami(0) = Lo( B ) + Ly (E)

@' has no gradient wrt. to ¢
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Loss Curve
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First-Order Approximation: DG-FIMAML

maml(a)_‘ce( . )+‘C9' .)

@' has no gradient wrt. to ¢
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Construct Virtual Tasks for Meta-Learning
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