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Semantic Parsing: Introduction

Data Example

Domain: Restaurant
NL: list all 3 star rated thai restaurants
Program: select restaurant where star rating = 3 and cuisine = thai

Task:
Semantic parsing aims at mapping a natural language (NL) utterance to
its corresponding executable program.
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Motivation

Challenges of semantic parsing:

Current neural seq2seq parsers are data-hungry.

Annotation of NL-Program pairs is very expensive.

We need to do annotation for each new domain.

In this work, we focus on the semi-supervised setting.

No annotations available for most utterances.

This setting resembles a common real-life scenario .
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Motivating Example for Semi-Supervised Learning

Example

NL: list all 3 star rated thai restaurants

Candidate Programs Gold Exe

select restaurant where star rating = thai X X
select restaurant where cuisine > 3 X X
select restaurant where star rating = 3 X X
select restaurant where star rating = 3 and cuisine = thai X X

Key Observations:

Not all candidate programs for an utterance make sense.

Executability is a weak yet free learning signal.
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Ultilize Executability for Semi-Supervised Learning

Maximum marginal likelihood (MML):

Lθ(x) = − log
∑
y

R(y)p(y |x ,θ)

where x , y denote NL and program respectively. R(y) returns 1 if y is
executable; it returns 0 otherwise.
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Challenge of MML Training: Large Search Space

Executable

Programs

Non-Executable

Programs

Challenge:
The space of all possible programs is exponentially large, as well as the
space of executable ones.
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Explore by Beam-Search

Executable

Programs

Non-Executable

Programs

Seen Programs Unseen Programs

Beam search:
It is typical to use beam search to explore the program space. As a result,
the space can be further divided by whether a program is ‘seen’, i.e.,
retrieved by beam search.
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Search Space Divided by Executability and Beam-Search

Pse
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Pue

Pun
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Divided program space:
Beam-search can help us find a subset of executable programs (Pse), but
also ignores unseen executable programs (Pue).
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Two Conventional Approximations
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Figure: Divided program space.
∗ denotes the most probable
executable program y∗.

1. Self-Training:

LST(x ,θ) = − log p(y∗|x ,θ)

2. Top-K MML:

Ltop-k(x ,θ) = − log
∑
y∈Pse

p(y |x ,θ)

Can we design better objectives?
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Motivations of Our New Objectives
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Figure: Divided program space.

Encourage exploration of unseen
executable programs.

Promote sparsity among executable
programs.
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New Perspective of MML From Posterior Regularization

We assume a constrained faimily of distribution Q: for any q ∈ Q,

Eq(y)[R(y)] = 1

For a semantic parser p(y |x ,θ), the objective of posterior
regularization (Ganchev et al., 2010) is to penalize the KL-divergence
between Q and p.

where DKL(Q||p) = minq∈QDKL[q(y)||p(y |x ,θ)].
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EM Algorithm for Optimizing PR

E-Step:

M-step:
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E-Step Solution
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Figure: Divided program space.

E-step has a closed solution:

qt+1(y) =

{
p(y |x ,θt)

p(Pse∪Pue)
y ∈ Pse ∪ Pue

0 otherwise

Intuitively, qt+1(y) is a renormalized version
of p over executable programs.
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Connect PR with MML

Self-Training and TopK-MML can be re-interpreted as two ways of finding
qt+1(y) during E-step.

*
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Self-Training:

qt+1
ST (y) =

{
1 y = y∗

0 otherwise

Top-K MML:

qt+1
top-k(y) =

{
p(y |x ,θt)
p(Pse)

y ∈ Pse

0 otherwise
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Gradient Descent in M-Step

qt+1(y) as a ‘pseudo label’ for optimizing p(y |x ,θt).

θt+1 = θt −∇θCrossEntropy
(
qt+1(y), p(y |x ,θt)

)
If we plug in the E-step solution, the gradient of the cross-entropy loss
wrt. to θ is exactly the gradient of MML wrt. to θ !

optimize PR ⇐⇒ optimize MML
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PR-based New Objective: Repulsion MML
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qt+1
repulsion(y) =

{
p(y |x ,θt)
1−p(Psn)

y 6∈ Psn

0 otherwise

Intuition: pushing away seen
non-executable programs (Psn); shift
probability mass from the black area to the
grey areas.
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PR-based New Objective: Gentle MML
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qt+1
gentle(y) =


p(Pse∪sn)
p(Pse)

p(y |x ,θt) y ∈ Pse

p(y |x ,θt) y ∈ Pue ∪ Pun

0 y ∈ Psn

Intuition: it shifts the probability mass of
seen non-executable programs (Psn) directly
to seen executable programs (Pse) .
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PR-based New Objective: Sparse MML

Pse
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Seen Programs Unseen Programs qt+1
sparse = SparseMaxy∈Pse

(
log p(y |x ,θt)

)

Intuition: in most cases there is only one or
few correct programs among all executable
programs. (Also related to the low-density
separation principle.)
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Experiments

Overnight dataset:

It has eight different domains, each with labeled data

Basketball Blocks Calendar Housing Publications Recipes Restaurants Social

all 1952 1995 837 941 801 1080 1657 4419

Table: Number of data in each domain.

For each domain, we simulate semi-supervised learning by sampling
30% data as labeled data and using the rest as unlabeled data.
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Results of Lower and Upper Bound

There is a large gap between lower and upper bound.
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Results of Baselines

Self-Training and Top-K MML perform better than the lower bound,
but the gap is still large.
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Results of Our New Objectives

In average accuracy, Sparse MML achieves the best performance.
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Analysis: Length Ratio

Length Ratio: length of programs (y) / length of utterances (x)

Top-K MML favors shorter programs.

Repulsion MML and Gentle MML prefer longer programs.

Sparse MML strikes a balance between ST and Top-K MML.
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Key Takeaways

Executability can be used as weak learning signals for semi-supervised
semantic parsing.

Maximum marginal likelihood (MML) has a new interpretion from the
perspective of posterior regularization.

Our new objectives derived from the PR perspective can achieve
better performance than Self-Training and TopK-MML.

Code available at
http://github.com/berlino/tensor2struct-public.
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Thank you.
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