Learning from Execution for Semantic Parsing

Bailin Wang[†], Mirella Lapata[†] and Ivan Titov^{†§}

 † ILCC, University of Edinburgh, § ILLC, University of Amsterdam

Data Example

Domain: Restaurant
NL: list all 3 star rated thai restaurants
Program: SELECT restaurant WHERE star_rating = 3 AND cuisine = thai

Task:

Semantic parsing aims at mapping a natural language (NL) utterance to its corresponding executable program.

Challenges of semantic parsing:

- Current neural seq2seq parsers are data-hungry.
- Annotation of NL-Program pairs is very expensive.
- We need to do annotation for each new domain.

Challenges of semantic parsing:

- Current neural seq2seq parsers are data-hungry.
- Annotation of NL-Program pairs is very expensive.
- We need to do annotation for each new domain.

In this work, we focus on the semi-supervised setting.

- No annotations available for most utterances.
- This setting resembles a common real-life scenario .

Example

NL: list all 3 star rated thai restaurants

Candidate Programs	Gold	Exe
SELECT restaurant WHERE star_rating = thai	Х	Х
SELECT restaurant WHERE cuisine > 3	Х	Х
SELECT restaurant WHERE star_rating = 3	Х	\checkmark
SELECT restaurant WHERE star_rating = 3 AND cuisine = thai	\checkmark	\checkmark

Key Observations:

- Not all candidate programs for an utterance make sense.
- Executability is a weak yet free learning signal.

Maximum marginal likelihood (MML):

$$\mathcal{L}_{oldsymbol{ heta}}(x) = -\log\sum_{y} R(y) p(y|x,oldsymbol{ heta})$$

where x, y denote NL and program respectively. R(y) returns 1 if y is executable; it returns 0 otherwise.

Challenge of MML Training: Large Search Space

Challenge:

The space of all possible programs is exponentially large, as well as the space of executable ones.

Explore by Beam-Search

Beam search:

It is typical to use beam search to explore the program space. As a result, the space can be further divided by whether a program is 'seen', i.e., retrieved by beam search.

Search Space Divided by Executability and Beam-Search

Divided program space:

Beam-search can help us find a subset of executable programs (P_{SE}), but also ignores unseen executable programs (P_{UE}).

1. Self-Training:

$$\mathcal{L}_{\mathsf{ST}}(x,oldsymbol{ heta}) = -\log p(y^*|x,oldsymbol{ heta})$$

2. Top-K MML:

$$\mathcal{L}_{ ext{top-k}}(x,oldsymbol{ heta}) = -\log\sum_{y\in P_{ ext{se}}} p(y|x,oldsymbol{ heta})$$

Figure: Divided program space. * denotes the most probable executable program y*.

э

B ▶ < B ▶

1. Self-Training:

$$\mathcal{L}_{\mathsf{ST}}(x, oldsymbol{ heta}) = -\log p(y^*|x, oldsymbol{ heta})$$

2. Top-K MML:

$$\mathcal{L}_{ ext{top-k}}(x,oldsymbol{ heta}) = -\log\sum_{y\in P_{ ext{sp.}}} p(y|x,oldsymbol{ heta})$$

- < A

B ▶ < B ▶

Figure: Divided program space. * denotes the most probable executable program y*.

Can we design better objectives?

• Encourage exploration of unseen executable programs.

Figure: Divided program space.

э

- ∢ ∃ ▶

Figure: Divided program space.

- Encourage exploration of unseen executable programs.
- Promote sparsity among executable programs.

→ < ∃→

New Perspective of MML From Posterior Regularization

We assume a constrained faimily of distribution \mathcal{Q} : for any $\boldsymbol{q} \in \mathcal{Q}$,

 $\mathbb{E}_{\boldsymbol{q}(\boldsymbol{y})}[R(\boldsymbol{y})] = 1$

B ▶ < B ▶

New Perspective of MML From Posterior Regularization

We assume a constrained faimily of distribution \mathcal{Q} : for any $\boldsymbol{q} \in \mathcal{Q}$,

 $\mathbb{E}_{\boldsymbol{q}(\boldsymbol{y})}[R(\boldsymbol{y})] = 1$

For a semantic parser $p(y|x, \theta)$, the objective of posterior regularization (Ganchev et al., 2010) is to penalize the KL-divergence between Q and p.

where $D_{\mathrm{KL}}(\mathcal{Q}||p) = \min_{q \in \mathcal{Q}} D_{\mathrm{KL}}[q(y)||p(y|x, \theta)].$

EM Algorithm for Optimizing PR

E-Step:

 $p(y|x, heta^t)$ (y)

Image: Image:

æ

- E - - E -

EM Algorithm for Optimizing PR

E-Step:

M-step:

э

(日) (周) (三) (三)

Figure: Divided program space.

- 4 週 ト - 4 三 ト - 4 三 ト

Self-Training and TopK-MML can be re-interpreted as two ways of finding $q^{t+1}(y)$ during E-step.

Self-Training:

- 4 同 6 4 日 6 4 日 6

 $q^{t+1}(y)$ as a 'pseudo label' for optimizing $p(y|x, \theta^t)$.

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t - \nabla_{\boldsymbol{\theta}} \mathsf{CrossEntropy}(q^{t+1}(y), p(y|x, \boldsymbol{\theta}^t))$$

If we plug in the E-step solution, the gradient of the cross-entropy loss wrt. to θ is exactly the gradient of MML wrt. to θ !

 $q^{t+1}(y)$ as a 'pseudo label' for optimizing $p(y|x, \theta^t)$.

$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t - \nabla_{\boldsymbol{\theta}} \mathsf{CrossEntropy} (q^{t+1}(y), p(y|x, \boldsymbol{\theta}^t))$$

If we plug in the E-step solution, the gradient of the cross-entropy loss wrt. to θ is exactly the gradient of MML wrt. to θ !

optimize PR \iff optimize MML

$$q_{\mathsf{repulsion}}^{t+1}(y) = \begin{cases} \frac{p(y|x,\theta^{t})}{1-p(P_{\text{SN}})} & y \notin P_{\text{SN}} \\ 0 & \text{otherwise} \end{cases}$$

.

Intuition: pushing away seen non-executable programs (P_{SN}); shift probability mass from the black area to the grey areas.

Image: A matrix

э

Intuition: it shifts the probability mass of seen non-executable programs (P_{SN}) directly to seen executable programs (P_{SE}) .

$$q_{\mathsf{sparse}}^{t+1} = \mathsf{SparseMax}_{y \in P_{\mathsf{SE}}} \left(\log p(y|x, \theta^t) \right)$$

Intuition: in most cases there is only one or few correct programs among all executable programs. (Also related to the low-density separation principle.) Overnight dataset:

• It has eight different domains, each with labeled data

	BASKETBALL	BLOCKS	CALENDAR	Housing	Publications	Recipes	Restaurants	Social
all	1952	1995	837	941	801	1080	1657	4419

Table: Number of data in each domain.

• For each domain, we simulate semi-supervised learning by sampling 30% data as labeled data and using the rest as unlabeled data.

Results of Lower and Upper Bound

• There is a large gap between lower and upper bound.

Results of Baselines

Objectives

• Self-Training and Top-K MML perform better than the lower bound, but the gap is still large.

Results of Our New Objectives

• In average accuracy, Sparse MML achieves the best performance.

Analysis: Length Ratio

Length Ratio: length of programs (y) / length of utterances (x)

- Top-K MML favors shorter programs.
- Repulsion MML and Gentle MML prefer longer programs.
- Sparse MML strikes a balance between ST and Top-K MML.

- Executability can be used as weak learning signals for semi-supervised semantic parsing.
- Maximum marginal likelihood (MML) has a new interpretion from the perspective of posterior regularization.
- Our new objectives derived from the PR perspective can achieve better performance than Self-Training and TopK-MML.
- Code available at

http://github.com/berlino/tensor2struct-public.

Thank you.

2

イロト イヨト イヨト イヨト

Kuzman Ganchev, Joao Graça, Jennifer Gillenwater, and Ben Taskar. 2010. Posterior regularization for structured latent variable models. *The Journal of Machine Learning Research*, 11:2001–2049.