Learning from Execution for Semantic Parsing

Bailin Wang', Mirella Lapata® and Ivan Titov'$

T ILCC, University of Edinburgh, § ILLC, University of Amsterdam

l§J UNIVERSITY
@ OF AMSTERDAM

Edinburgh
University of Edinburgh Al
Natural Language Processing

Learning from Execution 1/26

Semantic Parsing: Introduction

Data Example

Domain: Restaurant
NL: list all 3 star rated thai restaurants
Program: SELECT restaurant WHERE star_rating = 3 AND cuisine = thai

Task:
Semantic parsing aims at mapping a natural language (NL) utterance to
its corresponding executable program.

Learning from Execution 2 /26

Challenges of semantic parsing:

@ Current neural seq2seq parsers are data-hungry.
@ Annotation of NL-Program pairs is very expensive.

@ We need to do annotation for each new domain.

Learning from Execution 3 /26

Challenges of semantic parsing:

@ Current neural seq2seq parsers are data-hungry.
@ Annotation of NL-Program pairs is very expensive.

@ We need to do annotation for each new domain.

In this work, we focus on the semi-supervised setting.
@ No annotations available for most utterances.

@ This setting resembles a common real-life scenario .

Learning from Execution 3 /26

Motivating Example for Semi-Supervised Learning

Example

NL: list all 3 star rated thai restaurants
Candidate Programs Gold Exe
SELECT restaurant WHERE star_rating = thai X X
SELECT restaurant WHERE cuisine > 3 X X
SELECT restaurant WHERE star_rating = 3 X v
SELECT restaurant WHERE star_rating = 3 AND cuisine = thai v v
v

Key Observations:

@ Not all candidate programs for an utterance make sense.

@ Executability is a weak yet free learning signal.

Learning from Execution 4 /26

Ultilize Executability for Semi-Supervised Learning

Maximum marginal likelihood (MML):
IogZR (v|x,0)

where x, y denote NL and program respectively. R(y) returns 1 if y is
executable; it returns 0 otherwise.

Learning from Execution

5/

26

Challenge of MML Training: Large Search Space

Ezecutable
Programs

Non-FExecutable
Programs

Challenge:
The space of all possible programs is exponentially large, as well as the
space of executable ones.

Learning from Execution 6 /26

Explore by Beam-Search

Seen Programs Unseen Programs

Ezecutable
Programs

Non-FEzxecutable
Programs

Beam search:

It is typical to use beam search to explore the program space. As a result,
the space can be further divided by whether a program is ‘seen’, i.e.,
retrieved by beam search.

Learning from Execution 7 /26

Search Space Divided by Executability and Beam-Search

Seen Programs Unseen Programs

FEzxecutable
P P
Programs Sk UE
Non-FEzxecutable
Programs PN PoN

Divided program space:
Beam-search can help us find a subset of executable programs (Psg), but
also ignores unseen executable programs (Pyg).

Learning from Execution 8 /26

Two Conventional Approximations

Seen Programs — Unseen Programs

*

Ezecutable
P Py
Programs SE UE
Non-Ezecutable
Pen Pyn

Programs

Figure: Divided program space.
* denotes the most probable

executable program y*.

1. Self-Training:

ﬁST(Xa 0) = —log p(y*’X, 0)
2. Top-K MML.:

£top— (X 9 |0g Z ‘Xa 0)

YEPsg

Learning from Execution

9/

26

Two Conventional Approximations

1. Self-Training:

Seen Programs — Unseen Programs

Ezecutable ; P £ST(X’ 0) = - IOg p(y* ’X7 0)
Programs SE UE
Non-Ezecutable P P
Programs N N 2. Top-K MML.:
£top— (X 9 |0g Z ‘Xa 0)
Figure: Divided program space. yEPs:
* denotes the most probable
executable program y”. Can we design better objectives?

Learning from Execution

9/

26

Motivations of Our New Objectives

Seen Programs Unseen Programs

Executable
Programs Ps Pus
@ Encourage exploration of unseen
Non-Exccutable | ; executable programs.
Programs SN UN

Figure: Divided program space.

Learning from Execution 10 / 26

Motivations of Our New Objectives

Seen Programs Unseen Programs

Executable
Programs Pee Pos
@ Encourage exploration of unseen
Non-Exccutable |) executable programs.
Programs N UN .
@ Promote sparsity among executable

programs.

Figure: Divided program space.

Learning from Execution 10 / 26

New Perspective of MML From Posterior Regularization

We assume a constrained faimily of distribution Q: for any g € Q,

EquR(y)] =1

Learning from Execution 11 /26

New Perspective of MML From Posterior Regularization

We assume a constrained faimily of distribution Q: for any g € Q,

EquR(y)] =1

For a semantic parser p(y|x, @), the objective of posterior

regularization (Ganchev et al., 2010) is to penalize the KL-divergence
between Q and p.

p(y|z, 0)

where Dkr,(Q|[p) = mingeo Dxr[q(y)l[p(y|x, 8)].

Learning from Execution 11 /26

EM Algorithm for Optimizing PR

E-Step:

t+1
p(y|z, 8" N

Learning from Execution 12 /26

EM Algorithm for Optimizing PR

E-Step:
t+1
7" (y)
e)
Q

M-step:

Learning from Execution

E-Step Solution

Seen Programs Unseen Programs

Executable E-step has a closed solution:
Pr PSE PUE

ograms

p(y|x,0%)
qt+1(y) — p(Ps:UPuy) y € Psg U Pug
Non-Executable 0 otherwise

P I)SN PUN

rograms

Intuitively, gt**(y) is a renormalized version

of p over executable programs.

Figure: Divided program space.

Learning from Execution 13 /26

Connect PR with MML

Self-Training and TopK-MML can be re-interpreted as two ways of finding

qt*1(y) during E-step.

Seen Programs Unseen Programs

*
Ezecutable
P Py
Programs SE UE
Non-Ezxecutable
Programs Pon Pon

Self-Training:
1 = y*
t+1 _ y=Yy
dst (v) = { 0 otherwise
Top-K MML:
(v]x,0")
gl (=1 ey Y EPw
top-k 0 otherwise

Learning from Execution 14 / 26

Gradient Descent in M-Step

qt*1(y) as a ‘pseudo label' for optimizing p(y|x, 8?).
ot = ot — VgCrossEntropy(qt+1(y), p(y|x, Gt))

If we plug in the E-step solution, the gradient of the cross-entropy loss
wrt. to 6 is exactly the gradient of MML wrt. to 6 !

Learning from Execution 15 / 26

Gradient Descent in M-Step

qt*1(y) as a ‘pseudo label' for optimizing p(y|x, 8?).

ot = ot — VgCrossEntropy(qt+1(y), p(y|x, Gt))

If we plug in the E-step solution, the gradient of the cross-entropy loss
wrt. to 6 is exactly the gradient of MML wrt. to 6 !

optimize PR <= optimize MML

Learning from Execution 15 / 26

PR-based New Objective: Repulsion MML

x,0t
Seen Programs Unseen Programs t+1 _ % y g PSN
qrepulsion(y) - .
Ezecutable P 0 otherwise
Programs EE Pup
N"gj:f:“mt:“e Pun Intuition: pushing away seen
non-executable programs (Psy); shift

probability mass from the black area to the
grey areas.

16 / 26

Learning from Execution

PR-based New Objective: Gentle MML

Pssusy
Seen Programs Unseen Programs 1 P(p(jg:%)}x)p(y‘x7 91:) y e PSE
t+ —
Executable P p qgent|e(-y) - P(}/|Xa 91.‘) y € PUE U PUN
Programs o UE 0 3% c PSN

Non-Executable
P P UN
rograms

Intuition: it shifts the probability mass of
seen non-executable programs (Psy) directly
to seen executable programs (Psgy) .

Learning from Execution 17 / 26

PR-based New Objective: Sparse MML

1= SparseMax, cp,, (log p(y|x,6"))

Seen Programs Unseen Programs Gsparse
Executable
Pse P,
Programs B uE

Intuition: in most cases there is only one or

Non-Executable | p few correct programs among all executable
Programs SN UN .
programs. (Also related to the low-density

separation principle.)

Learning from Execution 18 / 26

Experiments

Overnight dataset:
@ It has eight different domains, each with labeled data

‘BASKETBALL Brocks CALENDAR HOUSING PUBLICATIONS RECIPES RESTAURANTS SOCIAL

all ‘ 1952 1995 837 941 801 1080 1657 4419

Table: Number of data in each domain.

@ For each domain, we simulate semi-supervised learning by sampling
30% data as labeled data and using the rest as unlabeled data.

Learning from Execution 19 / 26

Results of Lower and Upper Bound

80

70
68.5

60

50

Execution Accuracy (%)

Objectives

@ There is a large gap between lower and upper bound.

Learning from Execution 20 / 26

Results of Baselines

Execution Accuracy (%)

80
70
e B BX
60
50 N N
) R
s & {5‘3‘\ &
& o) Q) &
~ & <9 &9

Objectives

@ Self-Training and Top-K MML perform better than the lower bound,
but the gap is still large.

Learning from Execution 21/

Results of Our New Objectives

80
78.6
70
68.50 '°° W cso
60
50
. S

Execution Accuracy (%)

N

& + & @ 2 <
& & & & & 3 2
5 & <9 ngo\ & g QQ@
Objectives

@ In average accuracy, Sparse MML achieves the best performance.

Learning from Execution 22 /26

Analysis: Length Ratio

Length Ratio: length of programs (y) / length of utterances (x)

— Top-KMML =- Repulsion MML = Sparse MML = Self-Training
. « Gentle MML
Ratio,
pometT B -
14]° -
L]
1.35

1.25

Step

3.5k

4k 4.5k 5k 5.5k

o Top-K MML favors shorter programs.
@ Repulsion MML and Gentle MML prefer longer programs.
@ Sparse MML strikes a balance between ST and Top-K MML.

Learning from Execution 23 /26

Key Takeaways

@ Executability can be used as weak learning signals for semi-supervised
semantic parsing.

e Maximum marginal likelihood (MML) has a new interpretion from the
perspective of posterior regularization.

@ Our new objectives derived from the PR perspective can achieve
better performance than Self-Training and TopK-MML.

o Code available at
http://github.com/berlino/tensor2struct-public.

Learning from Execution 24 / 26

http://github.com/berlino/tensor2struct-public

Thank you.

Learning from Execution 25/ 26

References |

Kuzman Ganchev, Joao Graca, Jennifer Gillenwater, and Ben Taskar.
2010. Posterior regularization for structured latent variable models. The
Journal of Machine Learning Research, 11:2001-2049.

Learning from Execution 26 / 26

