Structured Reordering for Modeling Latent Alignments in Sequence Transduction

Bailin Wang[†], Mirella Lapata[†] and Ivan Titov^{†§}

 † ILCC, University of Edinburgh, § ILLC, University of Amsterdam

Systematic Generalization

Training Examples

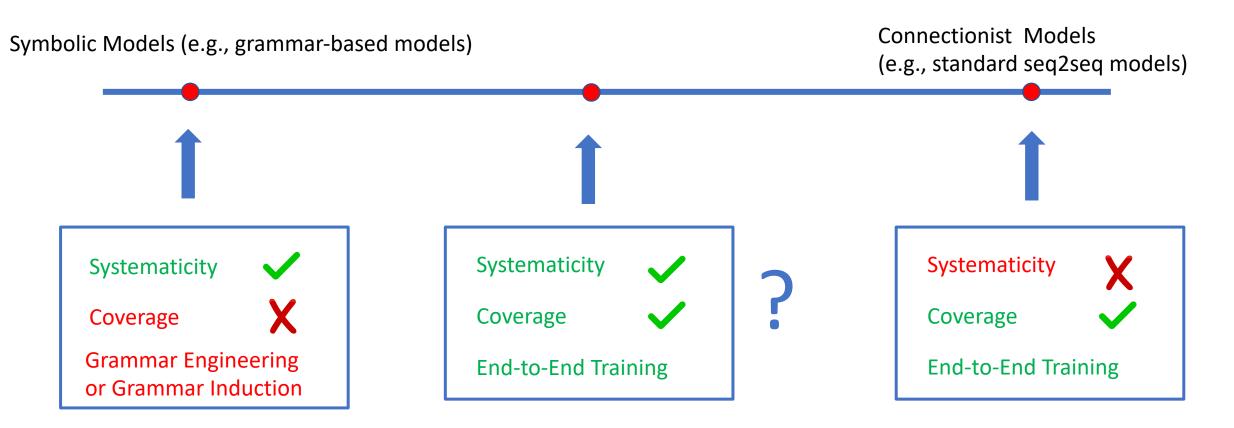
what is the length of the colorado river ?

what is the longest river ?
Iongest(river(all)))

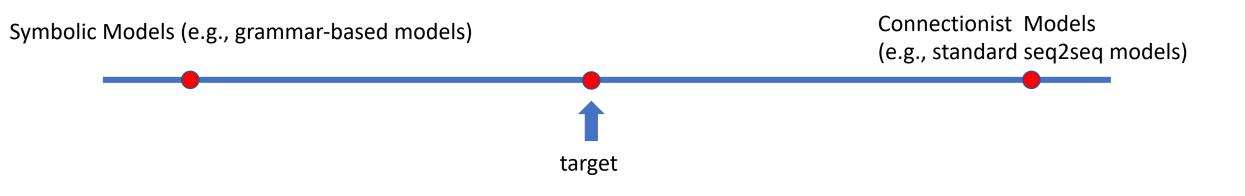
Test Example

what is the length of the longest river ?

The Spectrum of Sequence Transduction Models



The Spectrum of Sequence Transduction Models



Two inter-related questions:

1) Why are symbolic models good at systematic generalization?

2) What prevents seq2seq models from generalizing systematically?

Q1: Why are symbolic models good?

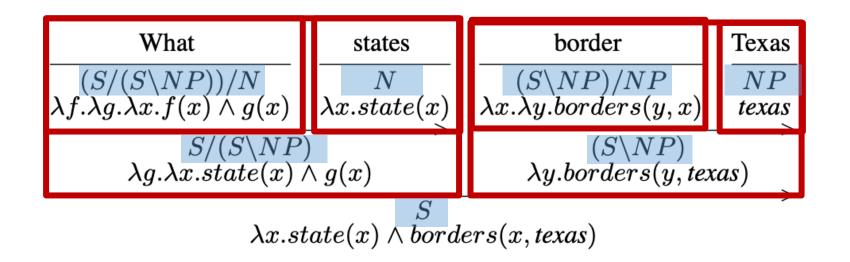
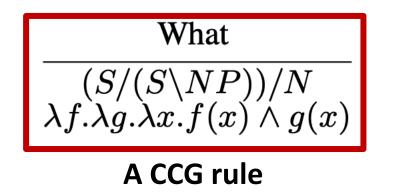


Figure: A CCG parse of the utterance "what states border Texas"

4

Q1: Why are symbolic models good?



Their grammar rules implicitly encode alignments between *input and output segments*.

- *Explicit decomposition* of input and output into segments
- consistent mappings from input segments to output ones

Q2: What makes seq2seq fail?

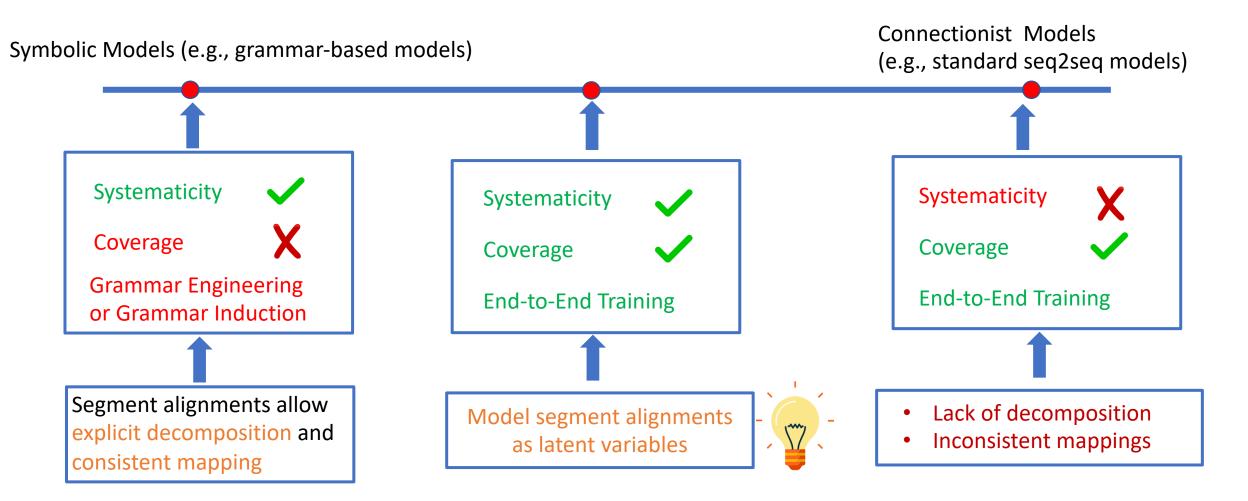
• Primitive units (e.g., words) are inconsistently mapped across different contexts [1].

• Standard seq2seq models tend to memorize large chunks, e.g., they process 'I am daxy' as a whole [2].

They do not exhibit a strategy of decomposition and consistent mapping!

[Brenden Lake, Marco Baroni, Generalization without Systematicity: On the Compositional Skills of Sequence-to-Sequence Recurrent Networks, 2017]
 [Dieuwke Hupkes, Verna Dankers, Mathijs Mul, Elia Bruni, Compositionality decomposed: how do neural networks generalise? 2019]

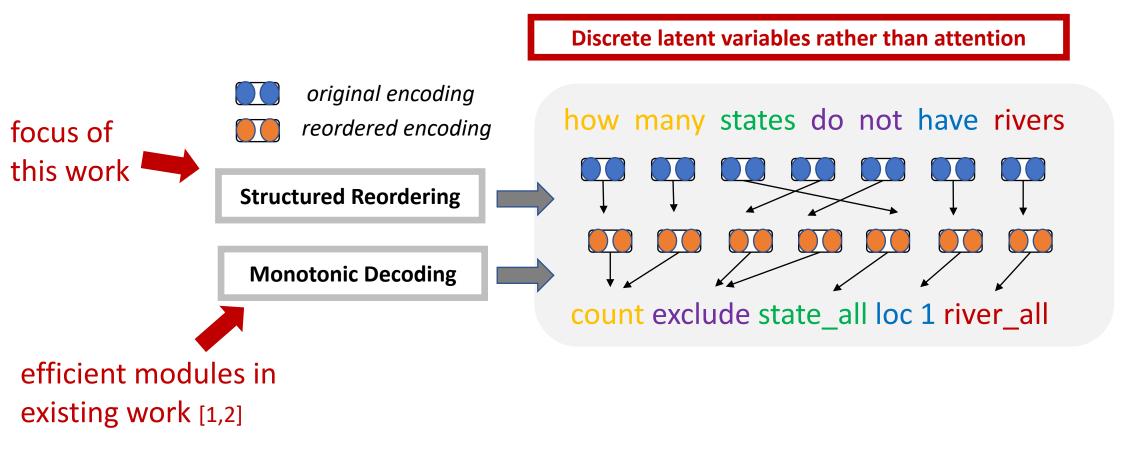
Alignments for Systematicity



A seq2seq model endowed with *latent* segment alignments

Model Architecture *ReMoto*

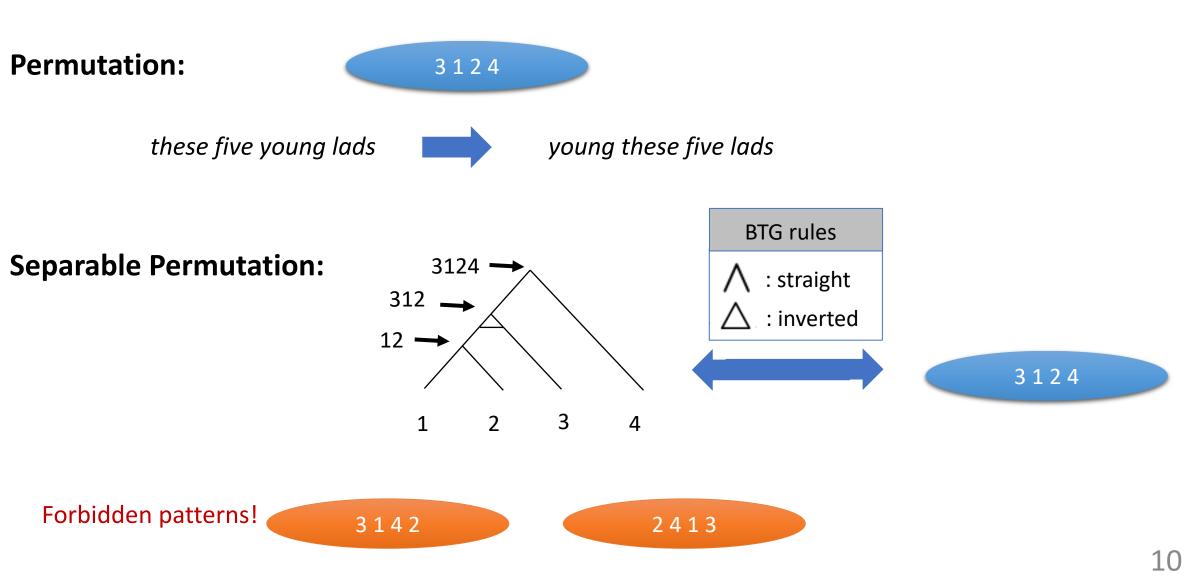
<u>Re</u>ordered-then-<u>Mo</u>no<u>to</u>ne alignments



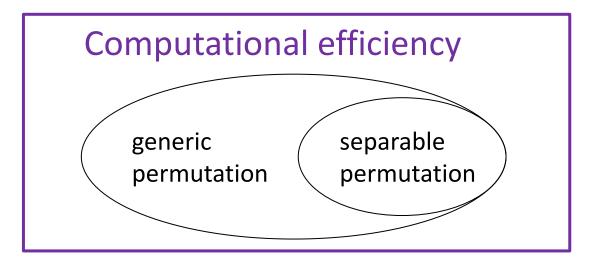
1. [Lei Yu, Jan Buys, and Phil Blunsom. Online segment to segment neural transduction, 2016]

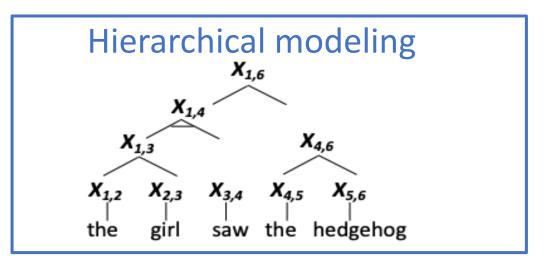
2. [Chong Wang, Yining Wang, Po-Sen Huang, Abdelrahman Mohamed, Dengyong Zhou, and Li Deng. Sequence modeling via segmentations. 2017]

Structured reordering via separable permutations



Why separable permutation?





Linguistic inductive bias [1,2]

1. [Mark Steedman. A formal universal of natural language grammar, 2020]

2. [Miloš Stanojevic and Mark Steedman. Formal basis of a language universal, 2021]

Training Objective:

reordered representations

$$-\log \mathbb{E}_{p_{\phi}(D|x)} p_{ heta}(y|M^DX)$$

parser for reordering monotonic decoding

input and output sequence encodings of input x permutation tree the permutation matrix corresponding to D

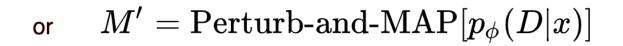
Surrogate Objective:

 $-\log p_{ heta}(y|M'X)$

where

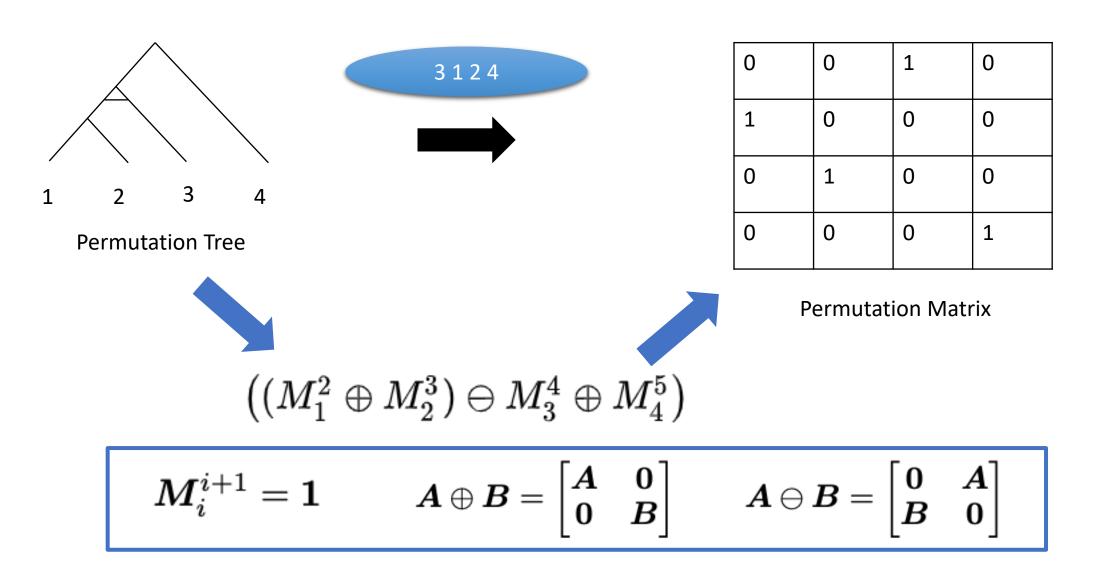
$$M' = \mathbb{E}_{p_{\phi}(D|x)} M^D$$

expectation of permutation matrices



an approximated sample of permutation matrix

Constructing Permutation Matrices



13

Recursion underlying Marginal Inference

expected permutation matrix for the segment from i to k

$$E_i^k = \sum_{i < j < k} p(straight)(E_i^j \oplus E_j^k) + p(inverted)(E_i^j \oplus E_j^k)$$

enumerate all middle points

for every middle point, there are two ways to combine the permutation matrices from the left and right segments

Surrogate Objective:

ve:
$$-\log p_{\theta}(y|M'X)$$

 $M' = E_1^n$ $M' = \widetilde{E}_1^n$
soft-ReMoto hard-ReMoto

a perturbed variant based on Straight-through Gumbel

Experiments

Diagnostic Task: Infix-to-Postfix Conversion

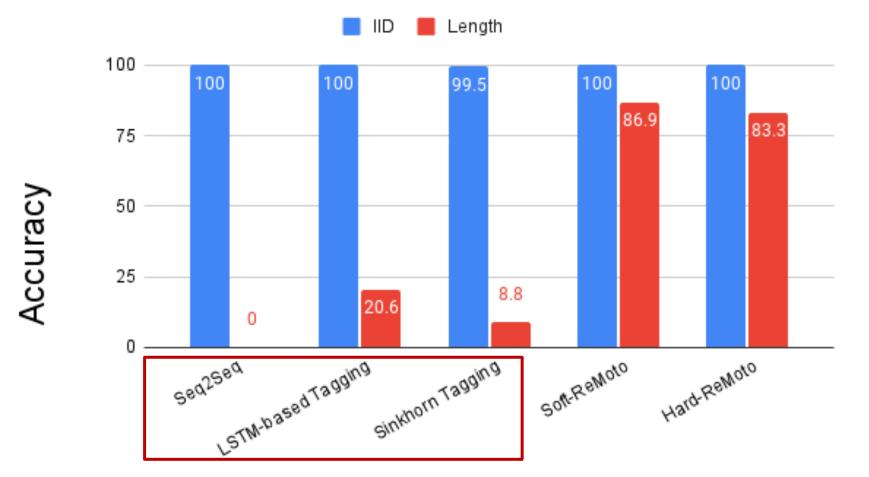
• Train (nesting depth < 7)

Input: ((1 + 9) * ((7 + 8) / 4))Output: ((1 9 +)((7 8 +) 4 /) *)Input: ((6 + 5) * (3 + 2))Output: ((6 5 +)(3 2 +) *)

- IID Evaluation (nesting depth < 7)
- Length Evaluation (nesting depth =7)

Results

Infix-to-Postfix Conversion



Sinkhorn Network: [Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations with gumbel-sinkhorn networks, 2018]

17

Experiment: Semantic Parsing

• Mapping natural language utterances to executable programs

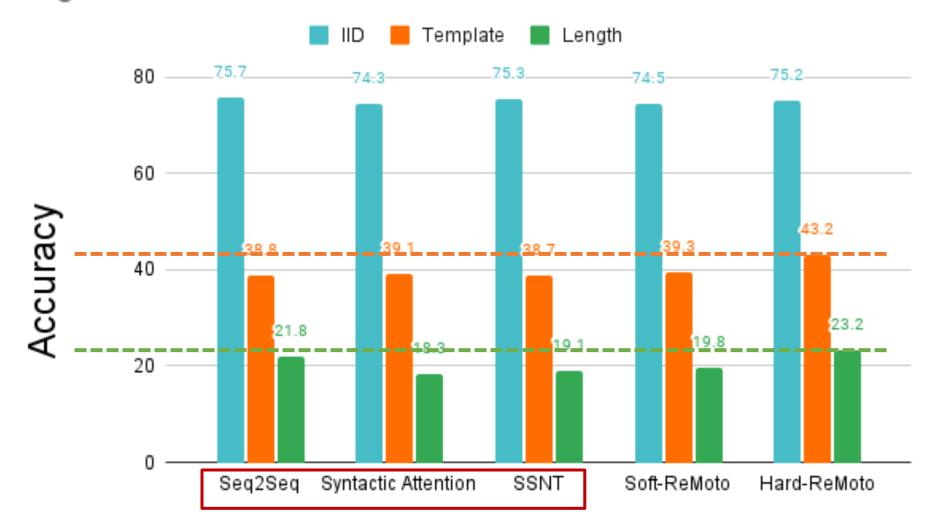
Input: how many states do not have rivers ?
Output: count(exclude(state(all), loc_1(river(all))))

• Splits

- O IID split: a standard split
- Template split: training and test examples have *disjoint templates*
- Length split: test examples are *longer* than training examples

Results

English



Summary

- A seq2seq model for NLP tasks that accounts for *latent nonmonotonic segment-level alignments*.
- Efficient algorithms for exact marginal and MAP inference with separable permutations, allowing for end-to-end training
- Better systematic generalization on both synthetic and real NLP tasks.
- Code and data are available at https://github.com/berlino/tensor2struct-public