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Abstract
Semantic parsing is the task of translating natural language utterances onto machine-

interpretable programs, which can be executed against a real-world environment to

obtain desired responses (e.g., a SQL query against a relational database). It is an

established paradigm for building natural language interfaces. However, most existing

semantic parsing systems are built only for the conventional yet limited setting, i.e., in

the context of a single fixed database. Moreover, they are typically data-hungry, i.e.,

they require a large number of examples for training. This thesis focuses on extending

the limited setting to a diverse spectrum of settings inspired by real-life scenarios, and

addressing the generalization challenges that arise during such extensions.

We consider three aspects of semantic parsing along which the conventional setting

deviates based on some real-life scenarios. Firstly, we consider transferability, a

property indicating whether a semantic parser is applicable on unseen domains (e.g.,

unseen databases), leading to cross-domain setting. Secondly, we consider three forms of

supervision. Apart from standard, yet expensive, utterance-program pairs, we investigate

settings where cheap supervision in the form of utterance-response pairs is given, or even

no supervision is at all. Thirdly, we study linguistic coverage i.e., the extent to which a

semantic parser can cover the space of utterances. In practice, it is operationalized by

investigating the degree to which a parser can generalize to unseen utterances that are

combinations of known fragments (e.g., phrases), which reflects the generative nature

of natural languages. For example, we ask how well a parser can generalize to long

utterances if exposed in training to only short ones.

From the machine learning perspective, the practical settings introduced above can

be formulated as two kinds of generalization challenges: settings driven by transfer-

ability and linguistic coverage require out-of-distribution generalization as test data in

such settings diverge from the observed training data in certain aspects (e.g., domains,

length of utterances); settings based on alternative forms of supervision require learning

from weak learning signals. The main contribution of this thesis is to address the

generalization challenges via: 1) injecting alignment-based model biases into semantic

parsers and; 2) designing specialized objectives with model-agnostic learning biases to

train semantic parsers, in the hope that the resulting parsers can be more robust (e.g., to

domain shifts) and take better advantage of weak learning signals. Empirical results

on a wide range of semantic parsing benchmarks show that our methodologies are

effective in handling the generalization challenges of interest, thus pushing existing

natural language interfaces one step further towards real usage.
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Lay summary
Natural language underpins how humans communicate with each other; it enables

the rich expression and exchange of information. As computational systems become

staples in more and more parts of our daily lives, how we communicate with them

becomes increasingly important too. A smart speaker (e.g., Amazon Echo, Google

Nest), which is typically not equipped with a graphical interface, uses natural language

(via speech recognition) as the primary - and often only - means for communicating

with users. This thesis looks at systems like these that enable communication with

computer systems via natural language. Of the computational systems users could

communicate with databases are of particular interest. They store huge volumes of

structured information, and a user who does not know how to query a database should

ideally still be able to access its contents without employing a technician. Being able to

ask a database a question in natural language could allow users to straightforwardly get

an answer whenever a question comes to mind.

Imagine you have a database about Scotland’s geography, and our aim is to build

you an interface where you can ask questions like ‘what’s the longest river in Scotland?’.

This could be done by collecting a huge number of user questions and hiring technicians

to annotate them with the corresponding database queries, queries which computers can

interpret and use to obtain an answer. Then we can build an intelligent system that learns

from these question-query pairs so that the next time you ask a novel question the system

hasn’t seen before, it will still be able to return the answer by intelligently figuring out

the corresponding computer queries itself, without the aid of a technician. In building a

system like this, several challenging problems arise: like when you have other databases,

e.g., one about Scottish farms, or Canadian geography - which our intelligent system

hasn’t seen before but you would still like to be able to ask questions about. Another

challenge in building our system is that hiring technicians is expensive, so it would

not be economical to request expert annotation for every database you could want to

ask about. In this thesis, we ask specific questions that originate from these challenges,

like whether or not we can build a universal natural language interface that works

for all databases – or whether an intelligent system can learn well enough from just

question-answer pairs (rather than question-query pairs) that we do not need an expert

technician to annotate. This thesis focuses on developing new techniques that address

these questions so that natural language interfaces can be built more efficiently and

effectively, ultimately bringing us one step closer to the goal of effortlessly interacting

with computational systems.
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Chapter 1

Introduction

1.1 Motivation

In recent decades, computational systems have significantly reshaped how users learn,

think, and communicate with the world. In many scenarios, it is highly desirable for

users to interact with computational systems using natural language (e.g., English).

Representative scenarios include interactions with smart home automation devices, and

interfaces to databases. A smart speaker (e.g., Amazon Echo), which is typically not

equipped with graphical interface, resorts to natural language (via speech recognition)

as the primary vehicle for receiving commands from users. For databases, which store

structured information, a user who does not know how to query a database should

ideally still be able to access its contents without employing a technician, whenever a

question comes to mind. Being able to ask a database a question in natural language

could straightforwardly enable this.

In general, a natural language interface is a transparent language layer that bridges

humans and machines. Machine-interpretable special-purpose languages (aka programs)

are typically designed so that computational systems can be controlled programmatically

by humans. For smart devices, such a language can be a set of Application Programming

Interface (API) calls; for databases, formal query languages are the primary mode of

access and management. However, just like any foreign language, these machine

languages require time-consuming special training to acquire and master. Moreover,

the lack of a unified machine language implies that monolingualism is far from enough

when it comes to conversing with machines in multiple applications. Natural language

interfaces bridge natural and machine languages, offering ease of use and a unified

mode of interaction of computational systems to end-users.

1



2 Chapter 1. IntroductionMotivating Example

cars_data
id mpg cylinders …

… …

car_names
make_id model make

… …

model_list
model_id maker model

… …

car_makers
id maker full_name country

… …

User Question:
For the cars with 4 cylinders, 
which model has the largest horsepower?

Desired Query:
SELECT T1.model

FROM car_names AS T1 JOIN cars_data AS T2
ON T1.make_id = T2.id
WHERE T2.cylinders = 4

ORDER BY T2.horsepower DESC LIMIT 1
Database:

2

Ford

Result:

Figure 1.1: An example of natural language interface to a database about cars. Questions

from a user are translated via a semantic parser to the desired SQL queries, which will

be executed against the database to obtain results returned to users.

An established paradigm to building natural language interfaces is semantic parsing,

which is an active research area within natural language processing (NLP) aiming to

perform translation from natural to machine languages. For example, a natural language

interface to databases can be built by a semantic parser illustrated in Figure 1.1. To

successfully handle the mapping from natural language to Structured Query Languages

(SQL), a semantic parser needs to not only obtain the semantics of the user utterances,

but also be able to ground them with respect to the database. Concretely, such a

model may have to handle mentions of relevant columns like ‘cylinders’, ‘model’ and

‘horsepower’, and table relations (e.g., table ‘cars data’ and ‘car names’ need to be

joined). The grounding process and usage of special-purpose languages make semantic

parsing in the context of natural language interfaces distinct from broad-coverage

semantic parsing where the main goal is to represent the semantics of natural languages

in general-purpose formalisms such as Combinatory Categorial Grammar (Steedman,

2000, CCG), and Abstract Meaning Representation (Banarescu et al., 2013, AMR),

where no grounding is required.

This thesis primarily focuses on a more general setting of natural language inter-

face to databases. Specifically, the concept of a database is generalized to structured

queryable data so that it can cover many other common data sources like knowledge

bases and Web tables, beyond relational databases. Accordingly, the conventional NLP

problems of question answering over knowledge bases and Web tables are instantiations

of this general setting. Other scenarios of natural language interface, for instance the

interface to smart devices mentioned above, can reasonably be viewed as instantiations

as well, where the concept of structured data refers to the ontology of API calls.
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Semantic parsing’s direct mapping to readily applicable programs is very appealing

from the application perspective. However, such direct mapping results in additional

computational complexity when developing an effective semantic parser. In the current

deep learning era, state-of-the-art methods - which are neural models learning from

examples of utterance-program pairs (Zettlemoyer and Collins, 2005) - are only suc-

cessful in limited settings (e.g., semantic parsing in the context of a fixed database) and

are typically quite data-hungry (e.g., they require many labeled examples for the target

database). This thesis focuses on addressing the generalization challenges that arise

for semantic parsers when deviating from the conventional training setting and data

requirements in some real-life scenarios.

1.2 Challenges from Diverse Settings

We consider three aspects of semantic parsing tasks, inspired by real-life scenarios we

will explain below. Each aspect establishes an axis along which the conventional setting

deviates, thereby defining one or more new task settings. We walk-through each of

these aspects and their resulting settings below. Most importantly, we will describe the

challenges that arise in each setting, which are the main problems this thesis aims to

address.

Transferability: from In-Domain to Cross-Domain Typically, semantic parsing tasks

are defined in the in-domain setting where the goal is to develop a semantic parser for a

particular domain (e.g., a relational database). For example, two conventional semantic

parsing tasks GeoQuery (Zelle and Mooney, 1996) and ATIS (Dahl et al., 1994) are

designed for the domain of US geography and airline travel, respectively. However,

systems that are successful in such tasks cannot be transferred to other domains directly.

Systems developed in such in-domain settings do not have to explicitly take into ac-

count the process of grounding user utterances to particular domains. Let us revisit

the example shown in Figure 1.1. If the goal is to develop a parser for a particular

database about cars, it is not necessary for a semantic parser to model the grounding

process via linking relevant columns or tables such as ‘horsepower’, because it is very

likely that the column name ‘horsepower’ is observed during training by the parser.

This can then develop a simple - yet effective - strategy to exploit co-occurrences of

natural language phrases and column names for generating (instead of linking) the

column during prediction. Explicitly modeling the grounding process is crucial for
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transferability because column names from a new database are probably not observed

during training. Intuitively, the grounding process requires a parser comprehending both

user utterances and databases so that the parser can link (instead of generate) the desired

column when necessary. The cross-domain setting arises to test whether a system can

be readily applied to other domains. Concretely the training and test domains in this

setting are disjoint so that a system is expected to be able to ground utterances onto

unseen domains during evaluation.

Annotation: Three Different Forms Semantic parsers are typically trained with

utterance-program pairs, e.g., annotators need to write the corresponding SQL for the

collected user question in Figure 1.1. Such annotation is labor-intensive: annotators are

required to have expert knowledge of query languages like SQL, and be familiar with

the structured data, e.g. which columns to use and which tables to join in a relational

database. In the case where structured data is in the form of simple Web tables, it is

possible to reduce cost by only annotating the answer (Liang et al., 2011; Berant et al.,

2013), i.e., execution result (aka denotation) of the corresponding program, as such

annotations do not require expert knowledge of programs. To learn from utterance-

answer pairs, a parser is expected to search over all possible programs that can lead to

the desired answer.

In the extreme setting where only unannotated user utterances are given, and no

programs or answers are provided, can we still utilise them to improve a semantic

parser? Such a setting resembles the common real-life scenario where massive numbers

of user utterances can be collected after deploying an initial (reasonably good) natural

language interface (Iyer et al., 2017). Effectively utilizing the unannotated utterances

makes it possible for a semantic parser to improve over time without human involvement.

To benefit from unannotated data weak learning signals need to be designed which the

semantic parser can use.

Linguistic Coverage: Compositionality of Utterances In semantic parsing, target

programs for machines to interpret and execute are intrinsically compositional in the

sense that they are defined and restricted according to some underlying grammar

(e.g., the grammar of SQL). Compositionality allows the expression of exponentially

many meanings with a limited set of grammar rules by effectively abstracting and

reusing certain sub-expressions. Natural language also exhibits compositionality which

enables compact and efficient representations of the same underlying meanings as
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Natural Language Utterances Programs

what is the length of the colorado river ? len( river( riverid ( ‘colorado‘ ) ) )

what is the longest river ? longest( river( all ) ) )

what is the length of the longest river ? len( longest( river( all ) ) )

Table 1.1: Three utterance-program pairs from the GeoQuery dataset. To express

a compound intention in the last example, the program is effectively a combination

of fragments of other programs; interestingly, natural language also exhibits a similar

phenomenon where the utterance reuses and combines phrases (e.g., ‘the length’ and

‘the longest river’) from other utterances.

programs. Table 1.1 gives an example of compositionality from the GeoQuery dataset

elucidating this phenomenon. Though natural language has sequential surface forms and

no explicit structure (e.g., tree structure), it has long been believed that natural language

is compositional as a result of the (potentially innate) process that governs the syntax of

natural language, e.g., generative grammar (Chomsky, 1965). To develop a semantic

parser that covers a wide spectrum of user intents (i.e., high linguistic coverage) using a

limited number of examples, developing strategies that can capture compositionality

seems to be necessary for generalization. Whether or not neural models can acquire an

underlying compositional process, often called compositional generalization, is also

interesting from the perspective of general artificial intelligence. Human learners can

interpret the test example in Table 1.1 - to a great extent - as compositionality allows

them to break novel examples down into known atoms (Cann, 1993). Whether neural

models can generalize in this way, or how to develop systems capable of the kinds of

compositional reasoning characteristic of the human mind is a long-standing research

question (Fodor and Pylyshyn, 1988; Lake and Baroni, 2018).

1.3 Tackling Generalization Challenges

From the machine learning perspective, the three challenges introduced above can be

intuitively framed as the following problem: we need to develop a semantic parser

based on data from a certain training distribution Ttrain, and expect the resulting parser

to perform well on data from a certain test distribution Ttest . Each setting effectively

specifies a pair of <Ttrain, Ttest>, and our goal is to tackle the generalization challenges

that arise in each pair. For example, transferability can be framed as a generalization
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Out-of-Distribution Weak Supervision

Domain Transferability X

Cheap Forms of Supervision X

Linguistic Coverage X

Table 1.2: From the machine learning perspective, domain transferability and linguistic

coverage require out-of-distribution generalization of a semantic parser; different forms

of supervision requires generalization from cheap but weak supervision.

challenge where Ttrain, Ttest are from some observed source (i.e., training) domains and

unseen target (i.e., test) domains.

By characterizing the pair <Ttrain, Ttest> of each setting, we categorize the three

challenges into two groups, namely out-of-distribution generalization and learning

from weak supervision, where the problems of domain transferability and linguistic

coverage are grouped together. These correspondences are summarized in Table 1.2.

We elaborate on each group of generalization challenges below. Moreover, as the main

contribution of this thesis, we will present a shared set of methodologies, including

modeling alignments and specialized training objectives, to address both kinds of

challenges.

1.3.1 Out-of-Distribution Generalization

In a standard supervised learning paradigm, the training and test examples are sampled

independently and identically distributed (i.i.d.) from the same distribution, i.e., Ttrain

and Ttest are identical. However, this paradigm cannot cover cases of transferability

and linguistic coverage, where Ttrain and Ttest are divergent. Such settings require

out-of-distribution generalization.

• In instances of domain transferability ( i.e. cross-domain semantic parsing) the

divergence between Ttrain and Ttest is obvious as they are distributions based

on two disjoint sets of domains. A typical sequence-to-sequence model trained

with standard supervised learning would presumably suffer from overfitting

to the source domains. For example, a parser could memorize the mentions

of tables/columns (e.g., ‘cars’ to ‘cars data’ in Figure 1.1) which cannot help

generalization (e.g., ‘cars’ to ‘cars name’ in a new database). Encouraging a

parser to condition on the environment appropriately, we expect it to rely on some
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generalizable functions or features (e.g., semantic matching between ‘cars’ and

‘cars data’).

• In the linguistic coverage setting, i.e. whether a system can interpret all possible

programs combinatorially composed of known segments, the divergence between

Ttrain and Ttest is less obvious. It is specifically created to challenge a parser’s

generalizability to new examples with known segments in an effort to test whether

a parser can acquire the underlying grammar-like compositional regularity of

natural language. The basic assumption in this setting is that there are some

underlying rules that dictate the mapping from natural language utterances to

programs. To reflect this assumption, Ttrain is typically assumed to cover all the

basic rules whereas Ttest contains novel compositions of these rules. In this sense,

the divergence between Ttrain and Ttest lies in different distribution of grammatical

structures 1. Since the true underlying rules are unknown, as proxies, Ttrain and

Ttest are created based on some measurable properties that correlate with the

underlying compositional rules. The most understandable setting is based on

splitting according to length of examples (Lake and Baroni, 2018): Ttrain only

cover utterances (or programs) with length smaller than a threshold, while Ttest

covers those with length greater than the threshold. Another example is shown in

Table 1.1, where a parser is expected to generalize the last example after being

trained on the first two examples. The divergence lies in that the grammatical

structure of ‘length of the longest river’ is novel, while the grammatical structures

of its segments ‘the length’ and ‘the longest river’ are not. There are other

properties (e.g. Finn et al., 2017; Keysers et al., 2019) that can be used to create

divergent distributions.

Out-of-distribution generalization in general is a difficult machine learning problem,

and has gained soaring interest in recent years (Arjovsky, 2020). In the context of

semantic parsing, the basic way of handling this problem is incorporating prior knowl-

edge into the modeling process, e.g., universal regularities of mapping utterances to

programs, and the way Ttrain diverges from Ttest . Specifically, we propose new semantic

parsers that take into account structured alignments invariant across Ttrain and Ttest , and

specialized training objectives to learn a parser based on our assumptions about the

1 More concretely, grammatical rules can include both lexical and structural rules. Intuitively, a
divergent distribution of lexical rules means that a word or phrase occurs in a novel position at test time,
while a divergent distribution of structural rules means that the test set contains sentences with novel
syntactic structures. Kim and Linzen (2020) provide detailed explanation on this.
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divergence. We elaborate on each of these methodologies below.

Modeling Alignments Our first methodology is based on the intuition that although

Ttrain and Ttest differ in certain ways (e.g., domains), they may share key common

features that can be leveraged for robust semantic parsing. The main commonality

investigated in this thesis is the correspondence (aka alignments) between utterances

and programs: how natural language fragments are linked with program fragments. For

example, in Figure 1.1, ‘4 cylinders’ should be aligned with the condition cylinders

= 4, ‘largest’ with ORDER BY ... DESC LIMIT 1. Intuitively, modeling alignments

encourages a parser to find fine-grained correspondences between fragments; this would

hopefully prevent it from memorizing large spans of training examples. In the naive

case, a parser could use a simple strategy to keep an utterance-to-program dictionary,

memorizing data at the example level, so that it can perfectly fit the data from Ttrain.

But such a strategy would not generalize to unseen utterances. In practice, although

neural models seem not exhibit the naive strategy they are found to memorize large

spans of training utterances (Hupkes et al., 2019). That is, current models seem to rely

on coarse-grained large-span level alignments to fit Ttrain. To address this we explicitly

model the underlying fine-grained alignments to favour better generalization.

Alignments between natural language and program fragments are not annotated

and thus unknown. Typically in neural models the attention mechanism (Bahdanau

et al., 2015) is believed to be responsible for handling the correspondences between

input and output. In this thesis, we propose to either upgrade or replace the attention

mechanism: 1) we inject some discrete relations into the standard attention mechanism

so that attention weights can be guided; 2) instead of relying on the standard attention,

we introduce latent-alignment models that explicitly accommodate the underlying

alignments via treating them as discrete latent variables.

Specialized Training Objectives Our second approach promotes out-of-distribution

generalization via specialized training objectives that augment conventional training.

The basic idea is to mimic the divergence between Ttrain and Ttest within the training

data to enable a learning algorithm to learn a strategy robust to that divergence. To

do this we create a set of virtual tasks – each containing a virtual train-test split. For

example, if the divergence is based on domain, where training and test data may be from

disjoint domains, we can mimic it by subsampling two disjoint training domains as

virtual train and virtual test respectively. To take advantage of this mimicked divergence,
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we employ a meta-learning algorithm operating on the created virtual tasks. The basic

intuition behind the algorithm is that, during the course of training, it encourages

gradient steps to not only reduce the loss on virtual train split (i.e., examples from

virtual train domains), but also be beneficial on the corresponding virtual test split, (i.e.,

examples from virtual test domains).

1.3.2 Learning from Weak Supervision

The generalization challenges that arise from cheap forms of annotation are straightfor-

ward: a parser needs to learn from weak signals in the form of denotations or unlabeled

data. A bit more formally, typical training data in semantic parsing comes in the form

of triples {(xi,ei,yi)}n
i=1, where x,e,y denotes a natural language utterance (or ques-

tion), the context of the utterance (e.g., a relational database) and the corresponding

program. We consider two settings with cheaper data: 1) learning from denotations,

where training examples are in the form of {(xi,ei,di)}n
i=1, where di is the answer (or

denotation) of question xi ; 2) learning from unlabeled utterances, where apart from

typical {(xi,ei,yi)}n
i=1, a large amount of unlabeled data in the form of {(xi,ei)}m

i=1

is also given. To handle these two settings, we employ the same methodologies of

modeling alignments and specialized training objectives discussed earlier.

Modeling Alignments When learning from denotations the correct program for each

question is not provided, meaning a parser needs to explore a large search space of

possible programs to find those whose execution can result in the given denotation. One

major challenge in this setting is that a parser should be robust to spurious programs

which accidentally execute to a given denotation, but do not reflect the semantics

of the question. Our intuition is that correct programs would likely respect certain

constraints were they to be aligned to the question text, while spurious programs would

not. We capitalize on this intuition and capture structural constraints by modeling latent

alignments between programs and questions.

Specialized Training Objectives Learning from unlabeled utterances is effectively

a semi-supervised learning problem. Our key observation for unsupervised learning

on unlabeled utterances is that not all candidate programs for an utterance will be

semantically valid. If we were to try and execute all candidate programs, only some of

them could be executed (i.e., without triggering errors from the executor) and obtain

non-empty execution results. Based on the assumption that correct programs should
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also be executable, we encourage a parser to only focus on executable programs via

specialized training objectives. Such objectives are also incorporated with certain

structural biases. For example, sparsity, which further encourages a parser to only focus

on a subset of executable programs, can be injected into training objectives.

1.3.3 Summary of Methodology

Though motivated by two different generalization challenges, we arrive at a similar

set of methods. At the core of both modeling alignments and specialized training

objectives are injecting inductive biases, or prior knowledge, into parsers. We make

certain assumptions in each setting about the way a semantic parser should generalize,

like how natural language utterances and programs should be aligned, or what out-of-

distribution test data will look like. This knowledge is not explicitly imported into the

model (e.g., in terms of grammars extracted from external tools). Instead it is specified

via computational components with certain regularities, like an alignment network

constraining the way natural language utterances can be aligned with programs or a

training objective encouraging certain behaviors of models.

In comparison, modeling alignments and specialized training objectives incorporate

inductive biases in quite different manners. The former can be viewed as a model bias,

where the architecture of a semantic parser is designed to accommodate alignments.

The latter can be viewed as a learning bias, where instead of upgrading a semantic

parser, the training objectives of the parser are manipulated. Injecting learning biases

is based on the implicit assumption that a parser is powerful enough to solve a task,

but too flexible and lacking sufficient guidance to arrive at a desired strategy. These

methodologies enjoy distinct properties were they to be extended to other scenarios: 1)

specialized training objectives are model-agnostic and can be applied to any semantic

parser, implying their more straightforward application to existing models than modeling

alignments; 2) Modeling alignments between input and output sequences is not unique

to semantic parsing. Accordingly this approach can be applied to a wider array of tasks,

including machine translation, than specialized training objectives.

1.3.4 Generalization to Other Types of Semantics

This thesis explores semantic parsing as a paradigm for natural language interfaces to

structured queryable data, such as relational databases and knowledge bases. Hence, the

formal languages that we primarily focus on are mainly developed from the perspective
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of data querying and management, e.g., SQL for relational databases and domain-

specific languages for querying knowledge bases. This is in contrast to semantic parsing

for other types of semantics, such as broad-coverage natural language semantics, e.g.,

CCG (Steedman, 2000) and lambda calculus (Liang et al., 2013), which are designed

from the linguistic perspective; general-purpose language (e.g., Python, C++), which

are designed for modelling general computations. The crucial distinction is that these

formalisms are not grounded in the sense that they cannot be readily used to generate

desired outcomes for natural language interfaces. As a result, semantic parsing with

them does not directly exhibit generalization challenges such as transferability and

learning from weak supervision.

However, our two methodologies of injecting model and learning biases can still

be used for other semantic formalisms. Specifically, some instantiations of the two

methodologies, which we will elaborate in this thesis, do not depend on the grounding

aspect of formalisms. Specifically, our first methodology of injecting structural align-

ment biases into semantic parsers can be used across semantics because alignments can

be defined only at the surface level where no grounding is required. Second, some spe-

cialized training objectives are based on surface-level features of programs and can be

adapted to facilitate semantic parsing for other formalisms. For example, in our recent

exploration (Conklin et al., 2021), we adapt the training algorithm for transferability

(Chapter 3) to boost the compositional generalization of semantic parsing for natural

language semantics.

1.4 Thesis Outline

In the remainder of this thesis, we first provide some essential background on semantic

parsing. Then each remaining chapter details our methods to address generalization

challenges that arise from the settings laid out above. A brief map of the main chapters

can be found in Table 1.3. We provide a summary of each chapter below.

Chapter 2 details the semantic parsing framework we will use throughout this thesis,

including task definition, basic components of our parser, datasets and evaluation

metrics for semantic parsing. We also situate our methodologies by relating them to

previous work on semantic parsing.
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Model Alignments Specialized Training Objectives

Domain Transferability Chapter 3 Chapter 3

Cheap Forms of Supervision Chapter 4 Chapter 5

Linguistic Coverage Chapter 6 Chapter 6 2

Table 1.3: A brief map of main chapters of the thesis from the modeling perspective.

The three challenges are approached from modeling alignments and specialized training

objectives.

Chapter 3 studies the setting of cross-domain semantic parsing. We first present a

new parser framework called RAT-SQL. It is designed to accommodate the alignments

and relations required for cross-domain text-to-SQL parsing, based on the relation-

aware self-attention mechanism. We further present a model-agnostic meta-learning

algorithm, called DG-MAML, that can further encourage RAT-SQL to generalize to

unseen domains.

Chapter 4 presents our latent-alignment parser for learning from denotations. To

facilitate tractable alignments, we first decompose the parsing task into predicting a

partial abstract program, then refining it while modeling structured alignments with

differential dynamic programming.

Chapter 5 presents our work on semi-supervised semantic parsing. To effectively

utilize unlabeled data, we use executability as a weak yet free learning signal. Due to

the large search space of executable programs conventional methods that use approxi-

mations based on beam-search, such as self-training, do not perform as well. To address

this, we view the problem of learning from executions from the perspective of posterior

regularization and propose a set of new training objectives.

Chapter 6 introduces our general latent-alignment sequence-to-sequence model for

boosting linguistic coverage of a semantic parsing by improving its systematic general-

ization. We draw inspiration from traditional grammar formalisms which would excel

at systematic generalization given suitable rules. We assume that their generalizability

comes from implicitly encoding alignments between input and output segments using

2This cell is based on a collaboration work Conklin et al. (2021), which is not a part of the thesis, we
place it here for the completeness of the map. We will only briefly describe it in Chapter 6.
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rules. Based on this assumption we directly model segment-to-segment alignments

as discrete structured latent variables within a neural sequence-to-sequence (seq2seq)

model. To efficiently explore the large space of alignments we introduce a reorder-

first align-later framework whose central component is a neural reordering module

producing separable permutations. The resulting model can be efficiently trained in an

end-to-end manner via dynamic programming.

Chapter 7 summarizes the findings of the thesis. We also discuss how our method-

ologies can be potentially extended to other related settings in semantic parsing.

Related Publications The main chapters are based on the following published work.

• Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew

Richardson. 2020. RAT-SQL: Relation-aware schema encoding and linking for

text-to-SQL parsers. In Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics (ACL). (Chapter 3)

• Bailin Wang, Mirella Lapata, and Ivan Titov. 2021b. Meta-learning for domain

generalization in semantic parsing. In Proceedings of the 2021 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies (NAACL). (Chapter 3)

• Bailin Wang, Ivan Titov, and Mirella Lapata. 2019. Learning semantic parsers

from denotations with latent structured alignments and abstract programs. In

Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP). (Chapter 4)

• Bailin Wang, Mirella Lapata, and Ivan Titov. 2021a. Learning from executions for

semantic parsing. In Proceedings of the 2021 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies (NAACL). (Chapter 5)

• Bailin Wang, Mirella Lapata, and Ivan Titov. 2021c. Structured reordering for

modeling latent alignments in sequence transduction. In Advances in Neural

Information Processing Systems (NeurIPS). (Chapter 6)
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Chapter 2

Background

Semantic parsing provides a unified framework for building natural language interfaces.

In this chapter, we will first lay out the problem definition, the basic components of

a semantic parsing framework along with evaluation metrics we use throughout the

remaining thesis. We then introduce three representative semantic parsing tasks. To

position our methodologies, we discuss some related systems that have previously been

proposed for semantic parsing. Finally, we position semantic parsing with respect to

related areas from a modeling perspective.

2.1 Semantic Parsing Framework

Task Definition Given a natural language question x in the context of an environment

e (e.g., a relational database), semantic parsing aims to map x to a corresponding

program y, which can be executed against e to obtain an answer or denotation d, denoted

as [[y]]e = d. Given a set of examples, e.g., {(xi,ei,yi)}n
i=1, we would like to build a

system that can perform the mapping for new questions and new environments (e.g.,

new relational databases). Such generalization is possible as the typical assumptions

made for this task are that new questions consist of known fragments (e.g., phrases)

seen from the training examples, and elements of new environments (e.g., column/table

names of new relational databases) are expressed in natural languages so that a system

can interpret them by “reading” them.

Four Components The semantic parsing framework used in this thesis has four basic

components listed below 1.

1They are based on and effectively equivalent to the five components defined by Liang (2016).
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Components

ex

y d

question environment
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answer

Figure 2.1: Components for semantic parsing. Given question x and its environment e, a

parser assigns a score (i.e., probability) to programs that are licensed by a environment-

specific grammar. To obtain the desired parser component that properly assigns scores

to correct programs, a trainer component is also required to search for optimal configura-

tions of the parser.

• Grammar: a set of grammar rules that constrains the set of valid programs given

question x and environment e.

• Executor: executes programs against environment e to obtain an answer d.

• Parser: pθ(y|x,θ) parameterized by θ assigns probability to possible programs.

• Trainer: searches for optimal parameters for θ given training examples.

The components are depicted in Figure 2.1. In the next section, these components will

be instantiated in three representative tasks for building natural language interfaces.

Evaluation To evaluate our semantic parser, we apply it to some new test questions

(which may also be in new environments). Two metrics are typically used:

• Program Accuracy where a predicted program is correct if it has the exact same

surface form as the gold program;

• Execution Accuracy where a predicted program is deemed correct if it obtains the

same execution results as the gold program.

Unfortunately neither metric is perfect: there might exist semantically equivalent

programs that look different (false negatives) or semantically distinct programs that
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Question What restaurant can you eat lunch outside at?

Lambda-DCS type.restaurant u hasOutdoorSeating u serveslunch

Question what is the length of the colorado river ?

FunQL len( river( riverid ( ‘colorado‘ ) ) )

Question What is the number of cars with more than 4 cylinders?

SQL SELECT COUNT(*) FROM cars data WHERE cylinders > 4

Table 2.1: Examples of query languages from Overnight (Wang et al., 2015), Geo-

Query (Kate et al., 2005) and Spider (Yu et al., 2018c), respectively.

happen to obtain the same execution results (false positives). But from a end user’s

perspective, evaluating execution results are desired as they are the ultimate return

from natural language interfaces, rather than programs. In this thesis, we will report

both performance in both metrics whenever possible. In Chapter 3, we also use use a

metric, called exact set match, that determines a program to be good if it is partially

matched with the gold program. This metric is primarily used during the early stage of

development, where program accuracy and execution accuracy are too low to measure

the progress being made.

2.2 Representative Tasks

The main goal of the thesis is to build natural language interfaces to structured data.

We consider three representative tasks, each with a different form of structured data.

For each task, we identify the formal language used to query the structured data, and

some datasets that have been commonly used to benchmark research progress. We also

provide some examples from these tasks in Table 2.1.

Interfaces for Knowledge Bases A knowledge base contains two parts: an ontology

and a set of facts. In the simplest form, it can be viewed as a collection of assertions

in the form of triples (e1, p,e2), where e1,e2 are entities (e.g., journal 1, 1993) and p

is a property (e.g., publicationDate). To query a knowledge base, it is typical to use

lambda-DCS (Liang et al., 2013), which is a compact variant of lambda calculus which

eliminates variables and makes existential quantification implicit. It can be viewed as a

specialized version of lambda calculus adapted for notational convenience for building

natural language interfaces for knowledge bases.
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Based on the availability of large-scale open-domain knowledge bases such as

Freebase (Bollacker et al., 2008), early work (Berant et al., 2013; Yih et al., 2015) use

semantic parsing as a means for (open-domain) question answering over such knowledge

bases. Despite the appealing scale, datasets for such tasks only contain relatively simple

questions. To match practical scenarios of having specialized domains and domain-

specific jargon, the Overnight dataset (Wang et al., 2015) provides knowledge bases

from eight domains along with complex questions. The first row of Table 2.1 shows an

example from the Overnight dataset.

Interfaces for Relational Databases Relational databases 2 are the primary vehicle

for storing information in many applications such as financial markets, and medical

records. A standard way to query relational databases is using SQL (Structured Query

Language), which is a specialized language based on relational algebra. Less popular

query languages are Prolog (Zelle and Mooney, 1996) and a simple functional query

language FunQL (Kate et al., 2005) which are mostly used in the traditional benchmark

GeoQuery (Zelle and Mooney, 1996). Compared with lambda-DCS used for querying

knowledge bases, these query languages are very convenient for end applications.

Although they tend to be less suitable for semantic parsing as they are not designed to

represent the semantics of natural language, which should make learning the mapping

between natural language and query language more challenging.

Early datasets like GeoQuery (Zelle and Mooney, 1996) and ATIS (Dahl et al., 1994)

only consider designing interfaces for a single database. As a result, a semantic parser is

evaluated on utterances in the same database as the one used during training. Different

from this single-domain setting, recent datasets such as Spider (Yu et al., 2018c) explore

the cross-database setting where the sets of databases used for training and evaluation

are disjoint. This setting is more practical as generalization to unseen databases entails a

universal natural language interface applicable to any target application and a particular

database.

Interfaces for Web Tables Another rich source of structured data is HTML tables

from Web pages. Specifically, tables from Wikipedia pages can be extracted and serve

as an update-to-date repository of open-ended information. Compared with knowledge

bases and relational databases extracted Web tables are simpler in structure - as a table

2One major difference between knowledge bases and relational bases is that they are built upon
ontologies and relational schemas, respectively. This difference also contributes to the divergence of their
query languages.
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schema is simply a short list of headers. Moreover, Web tables are semi-structured

in that cell values are usually not normalized (e.g.,‘100 cm’ needs to be converted to

the number 100 with the unit ‘cm’). Hence data normalization is a key additional step

required for semantic parsing over Web tables. Query languages for Web tables are

quite flexible: lambda-DCS (Pasupat and Liang, 2015), and SQL (Zhong et al., 2017)

have both been used in previous work.

Due to the availability and domain coverage of Wikipedia pages, datasets of Web

tables are usually large-scale and have expanded the scope of semantic parsing from

limited to open domains. WikiTableQuestions (Pasupat and Liang, 2015) and Wik-

iSQL (Zhong et al., 2017) are two representative datasets. WikiTableQuestions contains

around 22k examples with around 2k tables; WikiSQL contains around 81k examples

with 24 tables. In contrast to WikiTableQuestions, WikiSQL is larger in size but lacks

complexity in the semantics of its questions, i.e., questions from this datasets are much

simpler and do not require complex logic operators such as argmax. Similar to cross-

database semantic parsing, the Web tables for training and test in WikiTableQuestion

and WikiSQL are disjoint, implying that a semantic parser is required to generalize to

novel Web tables. It is worth noting that semantic parsing is different from a related

open-domain question answering setting; where the desired Web table to answer a

particular question is not given and needs to be retrieved. In our case the corresponding

Web table for a question is already provided so the research emphasis is placed on

resolving the semantics of questions rather than table retrieval.

Remarks on Components for Interfaces In summary, each kind of task requires

a different query language for programmatical interaction. To incorporate the query

language of a task, the grammar and executor components of a semantic parser vary

depending on the environment in the task. But these components are typically readily

available, e.g., they can be existing SQL grammars and SQL engines for execution for

building interfaces to relational databases. Hence, with existing grammar and executor

components at hand, the focus of this thesis is on the top two components, namely

the parser and the trainer component. The parser component is also affected by the

form of a query language, especially in our case alignments between natural language

utterances and query languages are explicitly modeled in this component. In general,

the choice of query language can have a significant impact on performance (Guo et al.,

2020), and choosing an appropriate query language for modeling alignments is also

an important but less acknowledged step when building semantic parsers. It is worth
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noting that finding a suitable formal language for semantic parsing requires further

effort (Liang et al., 2013). In contrast, the trainer component is task-agnostic and it

is typically based on the standard training objective of maximizing the likelihood of

correct programs. The specialized training algorithms we will introduce in Chapter 3

and Chapter 5 improve the standard trainer component, and they can be applied both

across tasks and across parsers.

2.3 Symbolic vs Neural Semantic Parsers

Like many other NLP areas, systems for semantic parsing have shifted from early

rule-based parsers (e.g., Woods, 1973; Winograd, 1971; Hendrix, 1982) to statistical

parsers (e.g., Wong and Mooney, 2006, 2007a; Lu, 2014; Zettlemoyer and Collins,

2005; Liang et al., 2013) to recent neural models (e.g., Dong and Lapata, 2016; Jia

and Liang, 2016). The transition has been heavily influenced by progress in machine

learning and deep learning. See Kamath and Das (2018) for a comprehensive survey of

the history of semantic parsing. Here we review systems that are very related to our

work from the perspective of symbolic vs neural construction, which will be explained

below.

One key ingredient of rule-based and statistical systems is symbolic construction

mechanism, i.e., the process where programs are constructed according to some rules

or grammars. Symbolic construction is linguistically appealing as it explicitly models

the coupling (i.e., alignment) of natural language and programs; accomodating certain

language phenomena (e.g., anaphor) can be achieved specifically via rule or gram-

mar engineering. The seminal work Zelle and Mooney (1996) proposes CHILL which

uses inductive logic programming to learn control rules for parsing. Zettlemoyer and

Collins (2005) relied on rules designed in Categorical Combinatorial Grammar (CCG,

Steedman, 2000), which construct lambda calculus grounded to natural language in

a bottom-up compositional manner using only a handful of combinators (e.g., type

raising and function composition). Later, Liang et al. (2013) proposed another grammar

formalism lambda-DCS to simplify the construction of lambda calculus based on a

generalization of dependency trees. Hybrid-tree from Lu (2014) is another grammar

formalism for semantic parsing inspired by synchronous grammars. In contrast, the

standard neural sequence-to-sequence models construct programs sequentially via the

attention mechanism. The critical difference lies in the concept of alignment: sym-

bolic construction explicitly model the correspondences between natural language
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words/phrases and program fragments whereas neural construction relies on soft align-

ments (i.e., attention).

The transition from symbolic construction to neural construction is mainly due to

efficiency of the attention mechanism, which allows efficient building and training of

large neural systems. However, symbolic construction becomes appealing again when

confronting challenges such as learning from weak supervision and generalization to

longer utterances as symbolic rules, when correctly identified, can generalize much

robustly than neural construction (Herzig and Berant, 2021; Shaw et al., 2020; Akyurek

and Andreas, 2021). The parsers we will present in Chapter 3, 4 and 6 are the attempts

to combine the best of both symbolic and neural constructions, and a step towards

neural-symbolic systems. Intuitively, we would like neural systems with soft rule-like

structured alignments which enjoy efficient training and better generalization.

2.4 Related Areas

Relation to Machine Translation Semantic parsing can be regarded as a special

instance of machine translation where the source language is a natural language (e.g.,

English) whereas the target language is a machine-interpretable formal language. It is

also evident by the resemblance between some successful semantic parsers and machine

translation systems in both statistical and neural eras. To name a few statistical systems,

Wong and Mooney (2006) employ synchronous context-free grammar (Aho and Ullman,

1973), which forms the basis of many successful syntax-based machine translation

systems (e.g., Chiang (2005)); Andreas et al. (2013) linearize target programs into

sequences and rely on the phrase-based machine translation system (Koehn et al., 2003);

Jones et al. (2012) employ tree-transducers for semantic parsing inpired by their usage

in machine translation (e.g., Yamada and Knight (2001)). The recent shift to neural

semantic parsers is influenced by the success of sequence-to-sequence models in neural

machine translation (Bahdanau et al., 2015).

Relation to Program Synthesis Semantic parsing is also very connected with pro-

gram synthesis (Gulwani et al., 2017); it can be even viewed as a special instance in

program synthesis where program specification is given in the form of natural language

(as opposed to other forms such as input-output examples). The subtle difference lies

in the motivation behind the two tasks: semantic parsing is usually coupled with a

practical application such as building a natural language interface. Hence, apart from
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synthesizing a program, semantic parsing in general also needs to cover other human

interaction problems, e.g., what if users need to ask a sequence of thematically related

questions to fullfil a complex goal (Yu et al., 2019b). In contrast, program synthesis

focus more on the methodology of searching for the desired program based on any

kind of manual specification, including natural language. Hence, from the modeling

perspective, two areas share some similarities. The problem we address in Chapter 5

is partially inspired by related work in program synthesis. Systematic generalization,

which is the topic of Chapter 6, has also motivated much work (e.g., Nye et al., 2020;

Chen et al., 2020) in program synthesis.
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Domain Generalization

In the context of semantic parsing, the notion of domain is realized by the environment

in which user utterances are issued. For example, in text-to-SQL parsing, a domain

refers to a relational database; in question answering against knowledge bases, a domain

trivially refers to a particular knowledge base 1. Conventional semantic parsing tasks

are typically defined as in-domain settings where model development and evaluation

are restricted to a particular domain. For example, a parser developed for the Geo-

Query (Zelle and Mooney, 1996) dataset only needs to handle questions asking about

US geography. This is desirable in the case where a natural language interface is created

for a fixed domain. But this is undesirable in a common scenario: to add a new domain

or apply a parser to a new application with new domains, we have to start from scratch,

e.g., collecting training data for new domains, without exploiting common knowledge

shared across domains so that the required human effort can be reduced.

Motivated by the practical scenario, the out-of-domain (aka cross-domain) setting

has been gaining interest in the NLP community. In this setting, semantic parsers that

are transferable to new domains need to be developed. Figure 3.1 shows a simple

example of cross-domain semantic parsing. From the modeling standpoint, building

semantic parsers in the out-of-domain setting is hard due to new challenges that are

not encountered in the conventional in-domain setting. In this chapter, we aim to

address these new challenges to obtain better transferable semantic parsers. To probe

transferability in a cross-domain semantic parsing task, a parser is trained on some

observed source domains, but evaluated on some new target domains. It is obvious that

tailoring a semantic parser for training domains, which worked in in-domain settings,

1In the remainder of the thesis, the notion of domain, environment are interchangeable with their
instantiations such as databases, knowledge bases or Web tables in the context of the respective task.

23
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database: farm

Please show the different statuses of cities and the average
population of cities with each status.

SELECT Status ,  avg(Population) FROM City GROUP BY Status

database: concert singer

Show all countries and the number of singers in each country.

SELECT Country ,  count(*) FROM Singer GROUP BY Country

Test

Train

Figure 3.1: Cross-domain semantic parsing: at training time, a parser observes instances

for the database concert singer. At test time, it needs to generate SQL for questions

pertaining to the unseen database farm. Examples are taken from the Spider dataset (Yu

et al., 2018c).

would not be a good strategy to handle out-of-domain settings. Instead, a cross-domain

semantic parser is expected to capture some general functionality or features that are

shared across domains.

To succeed in the cross-domain setting, a parser needs to achieve domain generaliza-

tion, i.e., the ability to generalize to domains that are unseen during training. Achieving

this goal would, in principle, lead to a universal natural language interface that allows

users to interact with data in arbitrary domains. This is also very intriguing from the

perspective of building semantic parsers: the ideal domain generalization entails that a

parser trained on a fixed amount of data from a limited number of domains are appli-

cable to any other new domains, i.e., eliminating the effort required for new domains

at all. Though in practice this assumption is hardly true, the extent to which domain

generalization is achieved has a significant impact on the additional effort (e.g., data

annotation) required to build a desirable parser for a new domain, as intuitively we can

start from a reasonably good parser trained on other domains instead of starting from

scratch. This chapter aims at identifying challenges of achieving domain generalization

and presents our methodologies for improving domain generalization.

Firstly, we identify two new challenges that arise in the setting of cross-domain

semantic parsing.



25

cars_data
id mpg cylinders edispl horsepower weight accelerate year

car_names
make_id model make

model_list
model_id maker model

car_makers
id maker full_name country

…

Natural Language Question:
For the cars with 4 cylinders, which model has the largest horsepower?

Schema:

Desired SQL:
SELECT T1.model
FROM car_names AS T1 JOIN cars_data AS T2
ON T1.make_id = T2.id
WHERE T2.cylinders = 4
ORDER BY T2.horsepower DESC LIMIT 1

Question → Column linking (unknown)
Question → Table linking (unknown)

Column → Column foreign keys (known)

Figure 3.2: A challenging text-to-SQL task from the Spider dataset (Yu et al., 2018c).

• Environment Conditioning: Typical in-domain semantic parsers cannot be trivially

adapted for cross-domain parsing as they lack a mechanism of conditioning on

(potentially new) environments.

• Optimization Mismatch: Optimization in the conventional supervised learning

paradigm does not encourage generalization to unseen domains. In contrast, it

probably leads to overfitting observed training domains.

That is, conventional models and the training strategy, which are developed for in-

domain settings (Finegan-Dollak et al., 2018), do not directly transfer to the challenging

cross-domain settings. In this chapter, we propose to upgrade semantic parsers and their

training strategy to address the two challenges respectively. We will use text-to-SQL

parsing as a running example of cross-domain semantic parsing, but the methodology

we will present can be adapted to environments other than relational databases 2.

Environment Conditioning In the context of cross-domain text-to-SQL parsing, do-

main generalization requires generalization to unseen database schemas. Schema

2For example, we use the proposed parser framework for semantic parsing against knowledge bases
in Chapter 5.
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generalization is challenging for three interconnected reasons. First, any text-to-SQL

parsing model must encode the schema into representations suitable for decoding a

SQL query that might involve generating references to columns or tables. Secondly,

these representations should encode all the information about the schema such as its

column types, foreign key relations, and primary keys used for database joins. Finally,

the model must recognize natural language phrases used to refer to columns and tables,

which might differ from the referential language seen in training. The former two are

known as schema encoding whereas the latter challenge is known as schema linking –

aligning entity references in the question to the intended schema columns or tables.

While the question of schema encoding has been studied in recent literature (Bogin

et al., 2019a), schema linking has been relatively under-explored. Consider the example

in Figure 3.2. It illustrates the challenge of ambiguity in linking: while “model” in the

question refers to car names.model rather than model list.model, “cars” actually

refers to both cars data and car names (but not car makers) for the purpose of table

joining. To resolve the column/table references properly, the semantic parser must take

into account both the known schema relations (e.g., foreign keys) and the question

context.

Prior work (Bogin et al., 2019a) addressed the schema representation problem by

encoding the directed graph of foreign key relations in the schema with a graph neural

network (GNN). While effective, this approach has two important shortcomings. Firstly,

it does not contextualize schema encoding with the question, thus making reasoning

about schema linking difficult after both the column representations and question word

representations are built. Secondly, it limits information propagation during schema

encoding to the predefined graph of foreign key relations. The advent of self-attentional

mechanisms in NLP (Vaswani et al., 2017) shows that global reasoning is crucial to

effective representations of relational structures. However, we would like any global

reasoning to still take into account the aforementioned schema relations.

In this chapter, we present a unified framework, called RAT-SQL,3 for encoding

relational structure in a database schema and the given question. It uses relation-aware

self-attention to combine global reasoning over the schema entities and question words

with structured reasoning over predefined schema relations. We then apply RAT-SQL

to the problems of schema encoding and schema linking. As a result, we obtain

57.2% exact match accuracy on the challenging Spider (Yu et al., 2018c) benchmark.

At the time of releasing the work, this result was the state of the art among models

3Relation-Aware Transformer.
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unaugmented with pretrained BERT (Devlin et al., 2019) embeddings – and further

reaches the overall state of the art (65.6%) when RAT-SQL is augmented with BERT.

In addition, we experimentally demonstrate that RAT-SQL enables the model to build

more accurate internal representations of the question’s true alignment with schema

columns and tables.

Optimization Mismatch To what extent is RAT-SQL close to achieving ideal domain

generalization? Or more directly is it good enough? We answer this question by

inspecting the gap between in-domain and out-of-domain performance on the Spider

dataset. The in-domain performance is obtained by a new split that lets RAT-SQL

observe some training examples of test domains, and it serves as an upper bound of

the out-of-domain performance. Thus, the gap reveals the extent to which domain

generalization is achieved for a parser. Surprisingly, we still see a gap of more than 25%

in accuracy using RAT-SQL, despite it being a state-of-the-art cross-domain parser.

As an orthogonal direction to improving the architecture of semantic parsers, we

focus on another important, yet under-explored aspect of building semantic parsers –

training strategy. Conventional supervised learning simply assumes that source- and

target-domain data originate from the same distribution, and as a result struggle to

capture this notion of domain generalization for cross-domain semantic parsing. We

draw inspiration from meta-learning (Finn et al., 2017; Li et al., 2018a) and use an

objective that optimizes for domain generalization. That is, we simulate a set of tasks,

where each task is a cross-domain semantic parsing task with its own source and target

domains. By optimizing towards better target-domain performance on each task, we

encourage a parser to extrapolate from source-domain data and achieve better domain

generalization.

During training, to simulate the scenario where a parser needs to process questions

to a new database at test time, we synthesize a set of virtual cross-domain parsing

tasks by sampling disjoint source and target domains for each task from the training

domains. The desideratum is that gradient steps computed towards better source-domain

performance would also be beneficial to target-domain performance. One can think

of the objective as consisting of both the loss on the source domain (as in standard

supervised learning) and a regularizer, equal to the dot product between gradients

computed on source- and target-domain data. Maximizing this regularizer intuitively

encourages gradient updates on source and target domains to agree with each other,

which presumably leads to gradient updates that are generally helpful for most domains
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and alleviate overfitting to source or target domains. The objective is adapted from

Li et al. (2018a) who adapt the Model-Agnostic Meta-Learning (MAML; Finn et al.

2017) algorithm for domain generalization in computer vision. In this chapter, we study

the effectiveness of this objective in the context of semantic parsing. This objective

is model-agnostic, simple to incorporate, and does not require any changes in parsing

models. Moreover, it does not introduce new parameters for meta-learning.

Contributions We focus on transferability of semantic parsing, and aim to obtain a

semantic parser that can be applied to any new domain. To this end, we promote cross-

domain generalization of semantic parsing via two kinds of complementry methods

listed below.

• Model with structural inductive biases: we propose RAT-SQL, a unified frame-

work, based on the relation-aware self-attention mechanism, to handle the process

of environment conditioning, comprising schema encoding and schema linking

for cross-domain text-to-SQL parsing.

• Training objectives: in addition to the new semantic parser, we present a meta-

learning objective (DG-MAML) that alleviates the optimization mismatch, and

directly optimizes for domain generalization.

Empirical experiments on standard benchmarks, such as Spider, verify that our method-

ologies, which result to a new model architecture coupled with a new training strategy,

lead to significantly better domain generalization.

Section Structure In Section 3.1 and 3.2, we first present our new semantic parser

RAT-SQL. Then in Section 3.3 and 3.4, we show how RAT-SQL can be further aug-

mented with our new training algorithm for better domain generalization.

3.1 Relation-Aware Semantic Parsing

We now describe RAT-SQL, a new semantic parser to handle conditioning on relational

databases in text-to-SQL parsing. First, we explain relation-aware self-attention, which

is the basic building block of RAT-SQL. Prior to presenting the components of RAT-

SQL, we first formally define the text-to-SQL semantic parsing problem in detail.

Finally, we present our main contribution – relation-aware input encoding module of

RAT-SQL, along with a decoder module based on existing work.
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Type of x Type of y Edge label Description

Column Column

SAME-TABLE x and y belong to the same table.

FOREIGN-KEY-COL-F x is a foreign key for y.

FOREIGN-KEY-COL-R y is a foreign key for x.

Column Table
PRIMARY-KEY-F x is the primary key of y.

BELONGS-TO-F x is a column of y (but not the primary

key).

Table Column
PRIMARY-KEY-R y is the primary key of x.

BELONGS-TO-R y is a column of x (but not the primary

key).

Table Table

FOREIGN-KEY-TAB-F Table x has a foreign key column in y.

FOREIGN-KEY-TAB-R Same as above, but x and y are reversed.

FOREIGN-KEY-TAB-B x and y have foreign keys in both direc-

tions.

Table 3.1: Description of edge types present in the directed graph G created to represent

the schema. An edge exists from source node x ∈ S to target node y ∈ S if the pair

fulfills one of the descriptions listed in the table, with the corresponding label. Otherwise,

no edge exists from x to y.

3.1.1 Preliminary: Relation-Aware Self-Attention

First, we introduce relation-aware self-attention, a model for embedding semi-structured

input sequences in a way that jointly encodes pre-existing relational structure in the input

as well as induces “soft” relations between sequence elements in the same embedding.

Our solutions to schema embedding and linking naturally arise as features implemented

in this framework.

Consider a set of inputs X = {xi}n
i=1 where xi ∈ Rdx . In general, we consider it an

unordered set, although xi may be imbued with positional embeddings to add explicit

ordering information. A self-attention encoder, or Transformer, introduced by Vaswani

et al. (2017), is a stack of self-attention layers where each layer (consisting of H heads)
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transforms each xi into yi ∈ Rdx as follows:

e(h)i j =
xiW

(h)
Q (x jW

(h)
K )>√

dz/H
; α

(h)
i j = softmax j

{
e(h)i j

}
z(h)i =

n

∑
j=1

α
(h)
i j (x jW

(h)
V ); zi = Concat

(
z(1)i , · · · ,z(H)

i

)
ỹi = LayerNorm(xi + zi)

yi = LayerNorm(ỹi +FC(ReLU(FC(ỹi)))

(3.1)

where FC is a fully-connected layer, LayerNorm is layer normalization (Ba et al., 2016),

1≤ h≤ H, and W (h)
Q ,W (h)

K ,W (h)
V ∈ Rdx×(dx/H).

One interpretation of the embeddings computed by a Transformer is that each

head of each layer computes a learned relation between all the input elements xi, and

the strength of this relation is encoded in the attention weights α
(h)
i j . However, in

many applications (including text-to-SQL parsing) we are aware of some pre-existing

relational features between the inputs, and would like to bias our encoder model toward

them. This is straightforward for non-relational features (represented directly in each xi).

We could limit the attention computation only to the “hard” edges where the preexisting

relations are known to hold. This would make the model similar to a graph attention

network (Veličković et al., 2018), and would also impede the Transformer’s ability to

learn new relations. Instead, RAT provides a way to communicate known relations to

the encoder by adding their representations to the attention mechanism.

Shaw et al. (2018) describe a way to represent relative position information in a

self-attention layer by changing Equation (3.1) as follows:

e(h)i j =
xiW

(h)
Q (x jW

(h)
K + rK

i j)
>√

dz/H

z(h)i =
n

∑
j=1

α
(h)
i j (x jW

(h)
V + rV

i j).

(3.2)

Here the ri j terms encode the known relationship between the two elements xi and x j

in the input. While Shaw et al. used it exclusively for relative position representation,

we show how to use the same framework to effectively bias the Transformer toward

arbitrary relational information.

Consider R relational features, each a binary relation R (s) ⊆ X×X (1≤ s≤ R).

The RAT framework represents all the pre-existing features for each edge (i, j) as

rK
i j = rV

i j = Concat
(
ρ
(1)
i j , . . . ,ρ

(R)
i j
)

where each ρ
(s)
i j is either a learned embedding for the

relation R (s) if the relation holds for the corresponding edge (i.e., if (i, j) ∈ R (s)), or
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airports

city

airport code airport name country

country abbrev

primary keyprimary key

flights

source airport

airline flight number

dest airport
primary key primary key

foreign key
foreign key airlines

abbreviation

airline id airline name

country

Figure 3.3: An illustration of an example schema as a graph G . We do not depict all the

edges and label types of Table 3.1 to reduce clutter. ♦ and � denote a column and a

table, respectively.

a zero vector of appropriate size. In the following section, we will describe the set of

relations our RAT-SQL model uses to encode a given database schema.

3.1.2 Problem Definition of Text-to-SQL Parsing

Given a natural language question Q and a schema S = 〈C ,T 〉 for a relational database,

our goal is to generate the corresponding SQL program P. Here question Q = q1 . . .q|Q|
is a sequence of words, and the schema consists of columns C = {c1, . . . ,c|C |} and

tables T =
{

t1, . . . , t|T |
}

. Each column name ci contains words ci,1, . . . ,ci,|ci| and each

table name ti contains words ti,1, . . . , ti,|ti|. The desired program P is represented as an

abstract syntax tree T in the context-free grammar of SQL.

Some columns in the schema are primary keys, used for uniquely indexing the

corresponding table, and some are foreign keys, used to reference a primary key column

in a different table. In addition, each column has a type τ ∈ {number, text}.
Formally, we represent the database schema as a directed graph G = 〈V ,E〉. Its

nodes V = C ∪T are the columns and tables of the schema, each labeled with the words

in its name (for columns, we prepend their type τ to the label). Its edges E are defined

by the pre-existing database relations, described in Table 3.1. Figure 3.3 provides an

example graph (with a subset of actual edges and labels).

While G holds all the known information about the schema, it is insufficient for

appropriately encoding a previously unseen schema in the context of the question

Q. We would like our representations of the schema S and the question Q to be



32 Chapter 3. Domain Generalization

a

How many airlines

Pri. Key

airline
id

C∈T

airline
name

…

…

…

…
C∉T

city

…

…

Table-Q
Table-Ques T-Table

airports

Figure 3.4: One RAT layer in the schema encoder.

joint, in particular for modeling the alignment between them. Thus, we also define the

question-contextualized schema graph GQ = 〈VQ,EQ〉 where VQ = V ∪Q = C ∪T ∪Q

includes nodes for the question words (each labeled with a corresponding word), and

EQ = E ∪EQ↔S are the schema edges E extended with additional special relations

between the question words and schema members, detailed in the rest of this section.

For modeling text-to-SQL generation, we adopt the encoder-decoder framework.

Given the input as a graph GQ, the encoder fenc embeds it into joint representations

ci, t i, qi for each column ci ∈ C , table ti ∈ T , and question word q ∈ Q respectively.

The decoder fdec then uses them to compute a distribution Pr(P | GQ) over the SQL

programs.

3.1.3 Relation-Aware Input Encoding

Following the state-of-the-art NLP literature, our encoder first obtains the initial repre-

sentations cinit
i , t init

i for every node of G by (a) retrieving a pre-trained Glove embedding

(Pennington et al., 2014) for each word, and (b) processing the embeddings in each

multi-word label with a bidirectional LSTM (BiLSTM) (Hochreiter and Schmidhuber,

1997). It also runs a separate BiLSTM over the question Q to obtain initial word

representations qinit
i .

The initial representations cinit
i , t init

i , and qinit
i are independent of each other and

devoid of any relational information known to hold in EQ. To produce joint representa-

tions for the entire input graph GQ, we use the relation-aware self-attention mechanism

(Section 3.1.1). Its input X is the set of all the node representations in GQ:

X = (cinit
1 , · · · ,cinit

|C | , t
init
1 , · · · , t init

|T |,q
init
1 , · · · ,qinit

|Q|).

The encoder fenc applies a stack of N relation-aware self-attention layers to X , with



3.1. Relation-Aware Semantic Parsing 33

separate weight matrices in each layer. The final representations ci, t i, qi produced by

the Nth layer constitute the output of the whole encoder.

Alternatively, we also consider pre-trained BERT (Devlin et al., 2019) embeddings

to obtain the initial representations. Following Huang et al. (2019); Zhang et al. (2019),

we feed X to the BERT and use the last hidden states as the initial representations before

proceeding with the RAT layers.4

Importantly, as detailed in Section 3.1.1, every RAT layer uses self-attention between

all elements of the input graph GQ to compute new contextual representations of

question words and schema members. However, this self-attention is biased toward

some pre-defined relations using the edge vectors rK
i j,r

V
i j in each layer. We define the

set of used relation types in a way that directly addresses the challenges of schema

embedding and linking. Occurrences of these relations between the question and the

schema constitute the edges EQ↔S . Most of these relation types address schema linking

(Section 3.1.4); we also add some auxiliary edges to aid schema encoding.

3.1.4 Schema Linking

Schema linking relations in EQ↔S aid the model with aligning column/table references

in the question to the corresponding schema columns/tables. This alignment is implicitly

defined by two kinds of information in the input: matching names and matching values,

which we detail in order below.

Name-Based Linking Name-based linking refers to identifying exact or partial occur-

rences of the column/table names in the question, such as the occurrences of “cylinders”

and “cars” in the question in Figure 3.2. Textual matches are the most explicit evi-

dence of question-schema alignment and as such, one might expect them to be directly

beneficial to the encoder. However, in all our experiments the representations produced

by vanilla self-attention were insensitive to textual matches even though their initial rep-

resentations were identical. Brunner et al. (2020) suggest that representations produced

by Transformers mix the information from different positions and cease to be directly

interpretable after 2+ layers, which might explain our observations. Thus, to remedy

this phenomenon, we explicitly encode name-based linking using RAT relations.

Specifically, for all n-grams of length 1 to 5 in the question, we determine (1)

whether it exactly matches the name of a column/table (exact match); or (2) whether

4In this case, the initial representations cinit
i , t init

i , qinit
i are not strictly independent although still yet

uninfluenced by E .
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the n-gram is a subsequence of the name of a column/table (partial match).5 Then,

for every (i, j) where xi ∈ Q, x j ∈ S (or vice versa), we set ri j ∈ EQ↔S to QUESTION-

COLUMN-M, QUESTION-TABLE-M, COLUMN-QUESTION-M or TABLE-QUESTION-M

depending on the type of xi and x j. Here M is one of EXACTMATCH, PARTIALMATCH,

or NOMATCH.

Value-Based Linking Question-schema alignment also occurs when the question

mentions any values that occur in the database and consequently participate in the

desired SQL, such as “4” in Figure 3.2. While this example makes the alignment

explicit by mentioning the column name “cylinders”, many real-world questions do not.

Thus, linking a value to the corresponding column requires background knowledge.

The database itself is the most comprehensive and readily available source of

knowledge about possible values, but also the most challenging to process in an end-

to-end model because of the privacy and speed impact. However, the RAT framework

allows us to outsource this processing to the database engine to augment GQ with

potential value-based linking without exposing the model itself to the data. Specifically,

we add a new COLUMN-VALUE relation between any word qi and column name c j

s.t. qi occurs as a value (or a full word within a value) of c j. This simple approach

drastically improves the performance of RAT-SQL (see Section 3.2). It also directly

addresses the aforementioned DB challenges: (a) the model is never exposed to database

content that does not occur in the question, (b) word matches are retrieved quickly via

DB indices and textual search.

Memory-Schema Alignment Matrix Our intuition suggests that the columns and

tables which occur in the SQL P will generally have a corresponding reference in the

natural language question. To capture this intuition in the model, we apply relation-

aware attention as a pointer mechanism between every memory element in y and all

the columns/tables to compute explicit alignment matrices Lcol ∈ R|y|×|C | and Ltab ∈

5This procedure matches that of Guo et al. (2019b), but we use the matching information differently
in RAT.
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R|y|×|T |:

L̃col
i, j =

yiW col
Q (cfinal

j W col
K + rK

i j)
>

√
dx

(3.3)

L̃tab
i, j =

yiW tab
Q (tfinal

j W tab
K + rK

i j)
>

√
dx

Lcol
i, j = softmax j

{
L̃col

i, j
}

Ltab
i, j = softmax j

{
L̃tab

i, j
}

Intuitively, the alignment matrices in Eq. (3.3) should resemble the real discrete

alignments and therefore should respect certain constraints like sparsity. When the

encoder is sufficiently parameterized, sparsity tends to arise with learning, but we can

also encourage it with an explicit objective.

3.1.5 Decoder

The decoder fdec of RAT-SQL follows the tree-structured architecture of Yin and Neubig

(2017). It generates the SQL P as an abstract syntax tree in depth-first traversal order,

by using an LSTM to output a sequence of decoder actions that either (i) expand the

last generated node into a grammar rule, called APPLYRULE; or when completing a

leaf node, (ii) choose a column/table from the schema, called SELECTCOLUMN and

SELECTTABLE.

Formally, Pr(P | Y ) = ∏t Pr(at | a<t , Y ) where Y = fenc(GQ) is the final encoding

of the question and schema, and a<t are all the previous actions. In a tree-structured de-

coder, the LSTM state is updated as mt ,ht = fLSTM
(
[at−1 ‖ zt ‖hpt ‖apt ‖n ft ], mt−1,ht−1

)
where mt is the LSTM cell state, ht is the LSTM output at step t, at−1 is the embedding

of the previous action, pt is the step corresponding to expanding the parent AST node

of the current node, and n ft is the embedding of the current node type. Finally, zt is

the context representation, computed using multi-head attention (with 8 heads) on ht−1

over Y .

For APPLYRULE[R], we compute Pr(at = APPLYRULE[R] | a<t ,y)= softmaxR (g(ht))

where g(·) is a 2-layer MLP with a tanh non-linearity. For SELECTCOLUMN, we com-

pute

λ̃i =
htW sc

Q (yiW sc
K )T

√
dx

λi = softmaxi
{

λ̃i
}

Pr(at = SELECTCOLUMN[i] | a<t ,y) =
|y|

∑
j=1

λ jLcol
j,i
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Figure 3.5: Choosing a column in a tree decoder.

and similarly for SELECTTABLE. Figure 3.5 illustrates SELECTCOLUMN of the tree

decoder.

3.2 Experiments

We implemented RAT-SQL in PyTorch (Paszke et al., 2017). During preprocessing,

the input of questions, column names and table names are tokenized and lemmatized

with the StandfordNLP toolkit (Manning et al., 2014). Within the encoder, we use

GloVe (Pennington et al., 2014) word embeddings, held fixed in training except for the

50 most common words in the training set. For RAT-SQL BERT, we use the WordPiece

tokenization. All word embeddings have dimension 300. The bidirectional LSTMs

have hidden size 128 per direction, and use the recurrent dropout method of Gal and

Ghahramani (2016) with rate 0.2. We stack 8 relation-aware self-attention layers on top

of the bidirectional LSTMs. Within them, we set dx = dz = 256, H = 8, and use dropout

with rate 0.1. The position-wise feed-forward network has inner layer dimension 1024.

Inside the decoder, we use rule embeddings of size 128, node type embeddings of size

64, and a hidden size of 512 inside the LSTM with dropout of 0.21.

We used the Adam optimizer (Kingma and Ba, 2015) with the default hyperparam-

eters. During the first warmup steps = max steps/20 steps of training, the learning

rate linearly increases from 0 to 7.4× 10−4. Afterwards, it is annealed to 0 with

7.4×10−4(1− step−warmup steps
max steps−warmup steps)

0.5. We use a batch size of 20 and train for up to

40,000 steps. For RAT-SQL + BERT, we use a separate learning rate of 3×10−6 to
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Model Dev Test

IRNet (Guo et al., 2019b) 53.2 46.7

Global-GNN (Bogin et al., 2019b) 52.7 47.4

IRNet V2 (Guo et al., 2019b) 55.4 48.5

RAT-SQL (ours) 62.7 57.2

With BERT:

EditSQL + BERT (Zhang et al., 2019) 57.6 53.4

GNN + Bertrand-DR (Kelkar et al., 2020) 57.9 54.6

IRNet V2 + BERT (Guo et al., 2019b) 63.9 55.0

RYANSQL V2 + BERT (Choi et al., 2020) 70.6 60.6

RAT-SQL + BERT (ours) 69.7 65.6

Table 3.2: Accuracy on the Spider development and test sets, compared to the other

approaches at the top of the dataset leaderboard as of May 1st, 2020. The test set

results were scored using the Spider evaluation server.

fine-tune BERT, a batch size of 24 and train for up to 90,000 steps.

Hyperparameter Search We tuned the batch size (20, 50, 80), number of RAT layers

(4, 6, 8), dropout (uniformly sampled from [0.1,0.3]), hidden size of decoder RNN

(256, 512), max learning rate (log-uniformly sampled from [5×10−4, 2×10−3]). We

randomly sampled 100 configurations and optimized on the dev set. RAT-SQL +

BERT reuses most hyperparameters of RAT-SQL, only tuning the BERT learning rate

(1×10−6, 3×10−6, 5×10−6), number of RAT layers (6, 8, 10), number of training

steps (4×104, 6×104, 9×104).

Datasets We use the Spider dataset (Yu et al., 2018c) for most of our experiments,

and also conduct preliminary experiments on WikiSQL (Zhong et al., 2017) to confirm

generalization to other datasets. As described by Yu et al., Spider contains 8,659

examples (questions and SQL queries, with the accompanying schemas), including

1,659 examples lifted from the Restaurants (Popescu et al., 2003; Tang and Mooney,

2000), GeoQuery (Zelle and Mooney, 1996), Scholar (Iyer et al., 2017), Academic (Li

and Jagadish, 2014), Yelp and IMDB (Yaghmazadeh et al., 2017) datasets. We do not
use the data augmentation scheme of Yu et al. (2018b).

As Yu et al. (2018c) make the test set accessible only through an evaluation server,
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we perform most evaluations (other than the final accuracy measurement) using the

development set. It contains examples with databases and schemas distinct from those

in the training set. For Spider, we report results using exact set match accuracy Yu

et al. (2018c) 6, as well as divided by difficulty levels. This metric considers SQL query

as a set of components and measures the extent to which the set of a predicted query

matches the set of a gold query in terms of F1. For WikiSQL, we report exact match

(i.e., program) accuracy and execution accuracy.

3.2.1 Spider Results

In Table 3.2 we show accuracy on the (hidden) Spider test set for RAT-SQL and compare

to all other approaches at or near state-of-the-art (according to the official leaderboard).

RAT-SQL outperforms all other methods that are not augmented with BERT embeddings

by a large margin of 8.7%. Surprisingly, it even beats other BERT-augmented models.

When RAT-SQL is further augmented with BERT, it achieves the new state-of-the-art

performance. Compared with other BERT-argumented models, our RAT-SQL + BERT

has smaller generalization gap between development and test set.

We also provide a breakdown of the accuracy by difficulty in Table 3.3. As expected,

performance drops with increasing difficulty. The overall generalization gap between

development and test of RAT-SQL was strongly affected by the significant drop in

accuracy (9%) on the extra hard questions. When RAT-SQL is augmented with BERT,

the generalization gaps of most difficulties are reduced.

Ablation Study Table 3.4 shows an ablation study over different RAT-based relations.

The ablations are run on RAT-SQL without value-based linking to avoid interference

with information from the database. Schema linking and graph relations make statisti-

cally significant improvements (p¡0.001). The full model accuracy here slightly differs

from Table 3.2 because the latter shows the best model from a hyper-parameter sweep

(used for test evaluation) and the former gives the mean over five runs where we only

change the random seeds.
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Split Easy Medium Hard Extra Hard All

RAT-SQL

Dev 80.4 63.9 55.7 40.6 62.7

Test 74.8 60.7 53.6 31.5 57.2

RAT-SQL + BERT

Dev 86.4 73.6 62.1 42.9 69.7

Test 83.0 71.3 58.3 38.4 65.6

Table 3.3: Accuracy on the Spider development and test sets, by difficulty as defined by

Yu et al. (2018c).

Model Accuracy (%)

RAT-SQL + value-based linking 60.54 ± 0.80
RAT-SQL 55.13 ± 0.84

w/o schema linking relations 40.37 ± 2.32

w/o schema graph relations 35.59 ± 0.85

Table 3.4: Accuracy (and ±95% confidence interval) of RAT-SQL ablations on the dev

set.

Dev Test

Model LF Acc% Ex. Acc% LF Acc% Ex. Acc%

IncSQL (Shi et al., 2018) 49.9 84.0 49.9 83.7

MQAN (McCann et al., 2018) 76.1 82.0 75.4 81.4

RAT-SQL (ours) 73.6 79.5 73.3 78.8

Coarse2Fine (Dong and Lapata, 2018) 72.5 79.0 71.7 78.5

PT-MAML (Huang et al., 2018) 63.1 68.3 62.8 68.0

Table 3.5: RAT-SQL accuracy on WikiSQL, trained without BERT augmentation or

execution-guided decoding (EG). Compared to other approaches without EG. “LF Acc” =

Logical Form Accuracy; “Ex. Acc” = Execution Accuracy.
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Figure 3.6: Alignment between the question “For the cars with 4 cylinders, which model

has the largest horsepower” and the database car 1 schema (columns and tables)

depicted in Figure 3.2.

3.2.2 WikiSQL Results

We also conducted preliminary experiments on WikiSQL (Zhong et al., 2017) to test gen-

eralization of RAT-SQL to new datasets. Although WikiSQL lacks multi-table schemas

(and thus, schema encoding is not as challenging), it still presents the challenges of

schema linking and generalization to new schemas. For simplicity of experiments, we

did not implement either BERT augmentation or execution-guided decoding (EG) (Wang

et al., 2018), both of which are common in state-of-the-art WikiSQL models. We thus

only compare to the models that also lack these two enhancements.

While not reaching state of the art, RAT-SQL still achieves competitive performance

on WikiSQL as shown in Table 3.5. Most of the gap between its accuracy and state of

the art is due to the simplified implementation of value decoding, which is required for

WikiSQL evaluation but not in Spider. Our value decoding for these experiments is a

simple token-based pointer mechanism, which often fails to retrieve multi-token value

constants accurately.

6 At the time of this work, exact set match accuracy is used as the primary metric mainly because
early systems are too weak to be measured by program or execution accuracy. For direct comparison
with other systems, we use exact set match accuracy. In Section 3.4, we report execution accuracy in
addition to exact set match accuracy.
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3.2.3 Discussion

Alignment Recall from Section 3.1 that we explicitly model the alignment matrix

between question words and table columns, used during decoding for column and table

selection. The alignment matrix provides a mechanism for the model to align words to

columns. An accurate alignment representation has other benefits such as identifying

question words to copy to emit a constant value in SQL.

In Figure 3.6 we show the alignment generated by our model on the example

from Figure 3.2.7 For the three words that reference columns (“cylinders”, “model”,

“horsepower”), the alignment matrix correctly identifies their corresponding columns.

The alignments of other words are strongly affected by these three keywords, resulting

in a sparse span-to-column like alignment, e.g., “largest horsepower” to horsepower.

The tables cars data and cars names are implicitly mentioned by the word “cars”.

The alignment matrix successfully infers to use these two tables instead of car makers

using the evidence that they contain the three mentioned columns.

The Need for Schema Linking One natural question is how often does the decoder

fail to select the correct column, even with the schema encoding and linking improve-

ments we have made. To answer this, we conducted an oracle experiment (see Table 3.6).

For “oracle sketch”, at every grammar nonterminal the decoder is forced to choose the

correct production so the final SQL sketch exactly matches that of the ground truth. The

rest of the decoding proceeds conditioned on that choice. Likewise, “oracle columns”

forces the decoder to emit the correct column/table at terminal nodes.

With both oracles, we see an accuracy of 99.4% which verifies that our grammar

is sufficient to answer nearly every question in the data set. With just “oracle sketch”,

the accuracy is only 73.0%, which means 72.4% of the questions, that RAT-SQL gets

wrong and could get right, have incorrect column or table selection. Similarly, with just

“oracle columns”, the accuracy is 69.8%, which means that 81.0% of the questions, that

RAT-SQL gets wrong, have incorrect structure. In other words, most questions have

both column and structure wrong, so there is room for improvement.

Error Analysis An analysis of mispredicted SQL queries in the Spider dev set showed

three main causes of evaluation errors. (I) 18% of the mispredicted queries are in fact

equivalent implementations of the NL intent with a different SQL syntax (e.g., ORDER

7 The full alignment also maps from column and table names, but those end up simply aligning to
themselves or the table they belong to, so we omit them for brevity.
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Model Acc.

RAT-SQL 62.7

RAT-SQL + Oracle columns 69.8

RAT-SQL + Oracle sketch 73.0

RAT-SQL + Oracle sketch + Oracle columns 99.4

Table 3.6: Accuracy (exact match %) on the development set given an oracle providing

correct columns and tables (“Oracle columns”) and/or the AST sketch structure (“Oracle

sketch”).

BY C LIMIT 1 vs. SELECT MIN(C)). Measuring execution accuracy rather than exact

match would detect them as valid. (II) 39% of errors involve a wrong, missing, or

extraneous column in the SELECT clause. This is a limitation of our schema linking

mechanism, which, while substantially improving column resolution, still struggles with

some ambiguous references. Some of them are unavoidable as Spider questions do not

always specify which columns should be returned by the desired SQL. Finally, (III) 29%

of errors are missing a WHERE clause, which is a common error class in text-to-SQL

models as reported by prior works. One common example is domain-specific phrasing

such as “older than 21”, which requires background knowledge to map it to age > 21

rather than age < 21. Such errors disappear after in-domain fine-tuning.

3.3 Meta-Learning for Domain Generalization

We now investigate another dimension of building cross-domain semantic parsers,

which is how to effectively train them to handle domain generalization, rather than rely

on standard maximum likelihood training.

Conventional Supervised Learning: a Single Task Assuming that question-SQL

pairs from source domains and target domains are sampled i.i.d from the same distribu-

tion, the typical training objective of supervised learning, which is the one we used in

the previous section, is to minimize the loss function of the negative log-likelihood of

the gold SQL query:

LB(θθθ) =−
1
N

N

∑
i=1

log pθθθ(P|Q,D) (3.4)
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where N is the size of mini-batch B . Since a mini-batch is randomly sampled from all

training source domains Ds, it usually contains question-SQL pairs from a mixture of

different domains.

Meta Learning: Distribution of Tasks Instead of treating semantic parsing as a

conventional supervised learning problem, we take an alternative view based on meta-

learning. Basically, we are interested in a learning algorithm that can benefit from a

distribution of choices of source and target domains, denoted by p(τ), where τ refers

to an instance of a zero-shot semantic parsing task in the sense that each has its own

disjoint source and target domains.

In practice, we usually have a fixed set of training source domains Ds. We construct

a set of virtual tasks τ by randomly sampling disjoint source and target domains from

the training domains. Intuitively, we assume that divergences between the test and

training domains during the learning phase are representative of differences between

training and actual test domains. This is still an assumption, but considerably weaker

compared to the i.i.d. assumption used in conventional supervised learning. Next, we

introduce the training algorithm called DG-MAML motivated by this assumption.

3.3.1 Learning to Generalize with DG-MAML

Having simulated source and target domains for each virtual task, we now need a

training algorithm that encourages generalization to unseen target domains in each task.

For this, we turn to optimization-based meta-learning algorithms Finn et al. (2017);

Nichol et al. (2018); Li et al. (2018a) and apply DG-MAML (Domain Generalization

with Model-Agnostic Meta-Learning), a variant of MAML (Finn et al., 2017) for this

purpose. Intuitively, DG-MAML encourages the optimization in the source domain to

have a positive effect on the target domain as well.

During each learning episode of DG-MAML, we randomly sample a task τ which

has its own source domain Dτ
s and target domain Dτ

t . For the sake of efficiency, we

randomly sample mini-batch question-SQL pairs Bs and Bt from Dτ
s and Dτ

t , respec-

tively, for learning in each task. DG-MAML conducts optimization in two steps, namely

meta-train and meta-test.

Meta-Train DG-MAML first optimizes parameters towards better performance in the

virtual source domain Dτ
s by taking one step of stochastic gradient descent (SGD) from
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the loss under Bs.

θθθ
′← θθθ−α∇θθθLBs(θθθ) (3.5)

where α is a scalar denoting the learning rate of meta-train. This step resembles

conventional supervised learning where we use stochastic gradient descent to optimize

the parameters.

Meta-Test We then evaluate the resulting parameters θθθ
′ in the virtual target domain

Dt by computing the loss under Bt , which is denoted as LBt (θθθ
′).

Our final objective for a task τ is to minimize the joint loss on Ds and Dt :

Lτ(θθθ) = LBs(θθθ)+LBt (θθθ
′)

= LBs(θθθ)+LBt (θθθ−α∇θθθLBs(θθθ))
(3.6)

where we optimize towards the better source and target domain performance simultane-

ously. Intuitively, the objective requires that the gradient step conducted in the source

domains in Equation (3.5) is beneficial to the performance of the target domain as well.

In comparison, conventional supervised learning, whose objective would be equivalent

to LBs(θθθ)+LBt (θθθ), does not pose any constraint on the gradient updates. As we will

elaborate shortly, DG-MAML can be viewed as a regularization of gradient updates in

addition to the objective of conventional supervised learning.

We summarize our DG-MAML training process in Algorithm 1. Basically, it

requires two steps of gradient update (Step 5 and Step 7). Note that θθθ
′ is a function

of θθθ after the meta-train update. Hence, optimizing Lτ(θθθ) with respect to θθθ involves

optimizing through the gradient update in Equation (3.5) as well. That is, when we

update the parameters θθθ in the final update of Step 7, the gradients need to back-

propagate through the meta-train updates in Step 5. The update function in Step 7 could

be based on any gradient descent algorithm. We choose the frequently-used optimizer

Adam (Kingma and Ba, 2015). The process to compute the DG-MAML objective is

also illustrated in Figure 3.7.

Note that DG-MAML is different from the original MAML (Finn et al., 2017) which

is typically used in the context of few-shot learning. In our case, it encourages domain

generalization during training, and does not require an adaptation phase.

3.3.2 Analysis of DG-MAML

To give an intuition of the objective in Equation (3.6), we follow previous work (Nichol

et al., 2018; Li et al., 2018a) and use the first-order Taylor series expansion to approxi-
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Algorithm 1 DG-MAML Training Algorithm

Require: Training databases D
Require: Learning rate α

1: for step← 1 to T do
2: Sample a task τ of (Dτ

s ,Dτ
t ) from D

3: Sample mini-batch Bτ
s from Dτ

s

4: Sample mini-batch Bτ
t from Dτ

t

5: Meta-train update: θθθ
′← θθθ−α∇θθθLBτ

s
(θθθ)

6: Compute meta-test objective: Lτ(θθθ) = LBs(θθθ)+LBt (θθθ
′)

7: Final Update: θθθ← Update(θθθ,∇θθθLτ(θθθ))

8: end for

mate it:

Lτ(θθθ) =LBs(θθθ)+LBt (θθθ
′)

=LBs(θθθ)+LBt (θθθ−α∇θθθLBs(θθθ))

≈LBs(θθθ)+LBt (θθθ)−α(∇θθθLBs(θθθ) ·∇θθθLBt (θθθ))

(3.7)

where in the last step we expand the function LBs at θθθ. The approximated objective

sheds light on what DG-MAML optimizes. In addition to minimizing the losses

from both source and target domains, which are LBs(θθθ)+LBt (θθθ), DG-MAML tries to

maximize ∇θθθLBs(θθθ) ·∇θθθLBt (θθθ), the dot product between the gradients of source and

target domains. That is, it encourages gradients to generalize between source and target

domain within each task τ.

3.3.3 First-Order Approximation

The final update in Step 7 of Algorithm 1 requires second-order derivatives, which may

be problematic, inefficient or non-stable with certain classes of models (Mensch and

Blondel, 2018). Hence, we propose an approximation that only requires computing

first-order derivatives.

First, the gradient of the objective in Equation (3.6) can be computed as:

∇θθθLτ(θθθ) =∇θθθθθθ
′
∇

θθθ
′LBt (θθθ

′)+∇θθθLBs(θθθ)

=
(
III−α∇

2
θθθ
LBs(θθθ)

)
∇

θθθ
′LBt (θθθ

′)+∇θθθLBs(θθθ)
(3.8)

where III is an identity matrix and ∇2
θθθ
LBs(θθθ) is the Hessian of LBs at θθθ. We consider

the alternative of ignoring this second-order term and simply assume that ∇θθθθθθ
′ = III. In
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25
Figure 3.7: Three steps to compute the DG-MAML objective. In the first meta-train

step, we perform one step gradient update based on the loss Lθ from the virtual source

databases shown in green and orange. In the second meta-test step, we evaluate the

updated parameter θ′ on the virtual target database shown in blue and get a new loss Lθ′ .

Finally, the DG-MAML objective Lmaml is the sum of both objectives from the meta-train

and meta-test steps. Loss on a database is computed over a batch of examples sampled

from the database, and the grey block represents an example with a database (denoted

with different colors), a natural language query (denoted as ? symbol), and a SQL query.

this variant, we simply combine gradients from source and target domains. But this

objective can still be viewed as maximizing the dot product of gradients from source

and target domain (for details see Nichol et al. (2018)).

The resulting first-order training objective, which we refer to as DG-FMAML,

is inspired by Reptile, a first-order meta-learning algorithm (Nichol et al., 2018) for

few-shot learning. A two-step Reptile would compute SGD on the same batch twice

while DG-FMAML computes SGD on two different batches, Bs and Bt , once. To put it

differently, DG-FMAML tries to encourage cross-domain generalization while Reptile

encourages in-domain generalization.
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3.4 Experiments

Base Parsers In general, DG-MAML is model-agnostic implying that it can be

coupled with any semantic parser to improve its domain generalization. In this chapter,

our base parsers are based on RAT-SQL. We made few improvements based on the

original RAT-SQL, such as adding a component for value prediction so that our base

parsers can be evaluated by execution accuracy. We call this parser RAT-SQL V2, and

we will compare it with the original one. By designing an in-domain benchmark, we

also show that the out-of-domain improvement does not come at the cost of in-domain

performance. We also present some analysis to show how DG-MAML affects domain

generalization.

Datasets We evaluate DG-MAML on two text-to-SQL benchmarks, namely, (English)

Spider (Yu et al., 2018c) and Chinese Spider (Min et al., 2019a). Chinese Spider is a

Chinese version of Spider that translates all NL questions from English to Chinese and

keeps the original English database. It introduces the additional challenge of encoding

cross-lingual correspondences between Chinese and English. In both datasets, we report

exact set match accuracy and execution accuracy 8.

Baselines Two kinds of features are widely used in recent semantic parsers to boost

domain generalization: schema-linking features (as mentioned in Section 3.1) and

pre-trained emebddings such as BERT. To show that our method can still achieve

additional improvements, we compare with strong baselines that are integrated with

schema-linking features and pre-trained embeddings. In the analysis (Section 3.4.4),

we will also show the effect of our method when both features are absent in the base

parsers.

We also compare with other leading text-to-SQL parsers such as IRNet (Guo et al.,

2019b), BRIDGE (Lin et al., 2020) and RYANSQL (Choi et al., 2020). These parsers

differ from RAT-SQL in architecture, but the comparison aims to show that our base

parser RAT-SQL V2 is comparable, or better than these leading parsers, and DG-MAML

can still have a significant effect on this strong base parser, as we will show soon.

Implementation and Hyperparameters For English questions and schemas, we use

GloVe (Pennington et al., 2014) and BERT-base (Devlin et al., 2019) as the pre-trained

8 In the leaderboard, execution accuracy is also called ‘execution with values’.

https://yale-lily.github.io/spider
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embeddings for encoding. For Chinese questions, we use Tencent embeddings (Song

et al., 2018) and Multilingual-BERT (Devlin et al., 2019). In all experiments, we use a

batch size of Bs = Bt = 12 and train for up to 20,000 steps.

3.4.1 Main Results

Our main results on Spider and Chinese Spider are listed in Table 3.7 and 3.8, respec-

tively.

Non-BERT Models DG-MAML boosts the performance of non-BERT base parsers

on Spider and Chinese Spider by 2.1% and 4.5% respectively, showing its effectiveness

in promoting domain generalization. In comparison, the performance margin for DG-

MAML is more significant in the cross-lingual setting of Chinese Spider. This is

presumably due to the fact that heuristic schema-linking features, which help promote

domain generalization for Spider, are not applicable in Chinese Spider. We will present

more analysis on this in Section 3.4.4.

BERT Models Most importantly, improvements on both datasets are not cancelled out

when the base parsers are augmented with pre-trained representations. On Spider, the

improvements brought by DG-MAML remain roughly the same when the base parser is

integrated with BERT-base. As a result, our base parser augmented with BERT-base

and DG-MAML achieves the best execution accuracy compared with previous models.

On Chinese Spider, DG-MAML helps the base parser with multilingual BERT achieve

a substantial improvement. Overall, DG-MAML consistently boosts the performance

of the base parser, and is complementary to using pre-trained representations.

3.4.2 In-Domain vs. Out-of-Domain

To confirm that the base parser struggles when applied out-of-domain, we construct

an in-domain setting and measure the gap in performance. This setting also helps us

address a natural question: does using DG-MAML hurt in-domain performance? This

would not have been surprising as the parser is explicitly optimized towards better

performance on unseen target domains.

To answer these questions, we create a new split of Spider. Specifically, for each

database from the training and development set of Spider, we include 80% of its

question-SQL pairs in the new training set and assign the remaining 20% to the new
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Model Dev Test

Set Match Accuracy

SyntaxSQLNet (Yu et al., 2018b) 18.9 19.7

Global-GNN (Bogin et al., 2019b) 52.7 47.4

IRNet (Guo et al., 2019b) 55.4 48.5

RAT-SQL (Wang et al., 2020) 62.7 57.2

Our Models
RAT-SQL V2 56.4 -

RAT-SQL V2 + DG-MAML 58.5 -

With BERT-base:

SyntaxSQLNet + BERT-base (Guo et al., 2019b) 25.0 25.4

IRNet + BERT-base (Guo et al., 2019b) 61.9 54.7

BRIDGE + BERT-base (Lin et al., 2020) 65.5 58.2

RAT-SQL + BERT-base 66.0 -

Our Models
RAT-SQL V2 + BERT-base 66.8 63.3

RAT-SQL V2 + BERT-base + DG-MAML 68.9 65.2

With BERT-large:

RYANSQL + BERT-large (Choi et al., 2020) 70.6 60.6

RAT-SQL + BERT-large (Wang et al., 2020) 69.7 65.6

Execution Accuracy

GAZP + Distil-BERT (Zhong et al., 2020) 59.2 53.5

BRIDGE + BERT-base (Lin et al., 2020) 65.3 59.9

Our Models
RAT-SQL V2 + BERT-base 66.8 64.1

RAT-SQL V2 + BERT-base + DG-MAML 69.3 66.1

Table 3.7: Accuracy (%) on the development and test sets of Spider. The first half

shows set match accuracy for both non-BERT and BERT models; the second half shows

execution accuracy of BERT models. Due to the number of model submissions constraint

enforced by the Spider team, we only evaluate our BERT models on the test set.

test set. As a result, the new split consists of 7702 training examples and 1991 test

examples. When using this split, the parser is tested on databases that all have been
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seen during training. We evaluate the non-BERT parsers with the same metric of set

match for evaluation.

Does the parser struggle out-of-domain? As in-domain and out-of-domain setting

have different splits, and thus do not use the same test set, the direct comparison

between them only serves as a proxy to illustrate the effect of domain shift. We show

that, despite the original split of out-of-domain setting containing a larger number of

training examples (8659 vs 7702), the base parser tested in-domain achieves a much

better performance (78.2%) than its counterpart tested out-of-domain (56.4%). This

suggests that the domain shift genuinely hurts the base parser.

Does DG-MAML hurt in-domain performance? We study DG-MAML in the in-

domain setting to see if it hurts in-domain performance. Somewhat surprisingly, we

instead observe a modest improvement (+1.1%) over the base parser. This suggests that

DG-MAML, despite optimizing the model towards domain generalization, captures, to

a certain degree, a more general notion of generalization or robustness, which appears

beneficial even in the in-domain setting.

Model Dev Test

SyntaxSQLNet (Yu et al., 2018b) 16.4 13.3

Our Models
RAT-SQL V2 31.0 23.0

RAT-SQL V2 + DG-MAML 35.5 26.8

With Multilingual BERT (M-BERT):

RAT-SQL + M-BERT 41.4 37.3

RYANSQL + M-BERT (Choi et al., 2020) 41.3 34.7

Our Models
RAT-SQL V2 + M-BERT 47.0 44.3

RAT-SQL V2 + M-BERT + DG-MAML 50.1 46.9

Table 3.8: Set match accuracy (%) on the development and test sets of Chinese Spider.
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3.4.3 Linking Features and Limitations of Spider

Previous work addressed domain generalization by focusing on the sub-task of schema

linking. For Spider, where questions and schemas are both in English, we leverage

n-gram matching features in Section 3.1 which improve schema linking and significantly

boost parsing performance. However, in Chinese Spider, it is not easy and obvious

how to design such linking heuristics. Moreover, as pointed out by Suhr et al. (2020),

the assumption that columns/tables are explicitly mentioned is not general enough,

implying that exploiting matching features would not be a good general solution to

domain generalization. Hence, we would like to see whether DG-MAML can be

beneficial when those features are not present.

Specifically, we consider a variant of the base parser that does not use this feature,

and train it with conventional supervised learning and with DG-MAML for Spider. As

shown9 in Table 3.9, we confirm that those features have a big impact on the base parser.

More importantly, in the absence of those features, DG-MAML boosts the performance

of the base parser by a larger margin. This is consistent with the observation that

DG-MAML is more beneficial for Chinese Spider than Spider, in the sense that the

parser would need to rely more on DG-MAML when these heuristics are not integrated

or not available for domain generalization.

3.4.4 Additional Experiments and Analysis

We present analysis on DG-FMAML and probing how DG-MAML works. As the test

sets for both datasets are not publicly available, we will use the development sets.

Effect of DG-FMAML We investigate the effect of the first-order approximation in

DG-FMAML to see if it would provide a reasonable performance compared with DG-

MAML. We evaluate it on the development sets of the two datasets, see Table 3.9. DG-

FMAML consistently boosts the performance of the base parser, although it lags behind

DG-MAML. For a fair comparison, we use the same batch size for DG-MAML and

DG-FMAML. However, because DG-FMAML uses less memory, it could potentially

benefit from a larger batch size. In practice, DG-FMAML is twice as fast to train than

DG-MAML.

9Some results in Table 3.9 differ from Table 3.7. The former reports dev set performance over three
runs, while the latter shows the best model, selected based on dev set performance.
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Model Dev (%)

Spider

Base Parser 55.6 ± 0.5

+ DG-FMAML 56.8 ± 1.2

+ DG-MAML 58.0 ± 0.8

Base Parser without Features 38.2 ± 1.0

+ DG-FMAML 41.8 ± 1.5

+ DG-MAML 43.5 ± 0.9

Chinese Spider

Base Parser 29.7 ± 1.1

+ DG-FMAML 32.5 ± 1.3

+ DG-MAML 34.3 ± 0.9

Table 3.9: Accuracy (and ±95% confidence interval) on the development sets of Spider

and Chinese Spider.

Probing Domain Generalization Schema linking has been the focus of previous work

on zero-shot semantic parsing. We take the opposite direction and use this task to probe

the parser to see if it, at least to a certain degree, achieves domain generalization due to

improving schema linking. We hypothesize that improving linking is the mechanism

which prevents the parser from being trapped in overfitting the source domains.

We propose to use ‘relevant column recognition’ as a probing task. Specifically,

relevant columns refer to the columns that are mentioned in SQL queries. For example,

the SQL query “Select Status, avg(Population) From City Groupby Status” in Figure

Model Precision Recall F1

Spider

Base Parser 70.0 70.4 70.2

Base Parser + DG-MAML 73.8 70.6 72.1

Chinese Spider

Base Parser 61.5 60.4 61.0

Base Parser + DG-MAML 66.8 61.2 63.9

Table 3.10: Performance (%) of column prediction on the development sets of Spider

and Chinese Spider.
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3.1 contains two relevant columns: ‘Status’ and ‘Population’. We formalize this

task as a binary classification problem. Given a NL question and a column from the

corresponding database, a classifier should predict whether the column is mentioned in

the gold SQL query. We hypothesize that representations from the DG-MAML parser

will be more predictive of relevance than those of the baseline, and the probing classifier

will detect this difference in the quality of the representations.

We first obtain the representations for NL questions and schemas from the parsers

and keep them fixed. The binary classifier is then trained based only on these representa-

tions. For classifier training we use the same split as the Spider dataset, i.e., the classifier

is evaluated on unseen databases. The results are shown in Table 3.10. The classifier

trained on the parser with DG-MAML achieves better performance. This confirms our

hypothesis that using DG-MAML makes the parser produce better encodings of NL

questions and database schemas and that this is one of the mechanisms the parsing

model uses to ensure generalization.

3.5 Related Work

Cross-Domain Text-to-SQL Parsing Semantic parsing of NL to SQL recently surged

in popularity thanks to the creation of two new multi-table datasets with the challenge

of schema generalization – WikiSQL (Zhong et al., 2017) and Spider (Yu et al., 2018c).

Schema encoding is not as challenging in WikiSQL as in Spider because it lacks multi-

table relations. Schema linking is relevant for both tasks but also more challenging in

Spider due to the richer NL expressiveness and less restricted SQL grammar observed

in it. The state of the art semantic parser on WikiSQL (He et al., 2019) achieves a test

set accuracy of 91.8%, significantly higher than the state of the art on Spider.

The recent state-of-the-art models evaluated on Spider use various attentional ar-

chitectures for question/schema encoding and AST-based structural architectures for

query decoding. IRNet (Guo et al., 2019b) encodes the question and schema separately

with LSTM and self-attention respectively, augmenting them with custom type vectors

for schema linking. They further use the AST-based decoder of Yin and Neubig (2017)

to decode a query in an intermediate representation (IR) that exhibits higher-level ab-

stractions than SQL. Bogin et al. (2019a) encode the schema with a GNN and a similar

grammar-based decoder. Both works emphasize schema encoding and schema linking,

but design separate featurization techniques to augment word vectors (as opposed to re-

lations between words and columns) to resolve it. In contrast, the RAT-SQL framework
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provides a unified way to encode arbitrary relational information among inputs.

Concurrently with RAT-SQL, Bogin et al. (2019b) published Global-GNN, a dif-

ferent approach to schema linking for Spider, which applies global reasoning between

question words and schema columns/tables. Global reasoning is implemented by gating

the GNN that encodes the schema using the question token representations. This differs

from RAT-SQL in two important ways: (a) question word representations influence

the schema representations but not vice versa, and (b) like in other GNN-based en-

coders, message propagation is limited to the schema-induced edges such as foreign

key relations. In contrast, our relation-aware transformer mechanism allows encoding

arbitrary relations between question words and schema elements explicitly, and these

representations are computed jointly over all inputs using self-attention.

We use the same formulation of relation-aware self-attention as Shaw et al. (2018).

However, they only apply it to sequences of words in the context of machine translation,

and as such, their relation types only encode the relative distance between two words.

We extend their work and show that relation-aware self-attention can effectively encode

more complex relationships within an unordered set of elements (in our case, columns

and tables within a database schema as well as relations between the schema and the

question). To the best of our knowledge, this is the first application of relation-aware

self-attention to joint representation learning with both predefined and softly induced

relations in the input structure. Hellendoorn et al. (2020) develop a similar model

concurrently with this work, where they use relation-aware self-attention to encode data

flow structure in source code embeddings. Sun et al. (2018a) use a heterogeneous graph

of KB facts and relevant documents for open-domain question answering. The nodes of

their graph are analogous to the database schema nodes in RAT-SQL, but RAT-SQL also

incorporates the question in the same formalism to enable joint representation learning

between the question and the schema.

Our meta-learning inspired training algorithm is similar in spirit to Givoli and

Reichart (2019), who also attempts to simulate source and target domains during

learning. However, their optimization updates on virtual source and target domains are

loosely connected by a two-step training procedure where a parser is first pre-trained

on virtual source domains and then fine-tuned on virtual target domains. As we will

show in Section 3.3, our training procedure does not fine-tune on virtual target domains

but rather, uses them to evaluate a gradient step (for every batch) on source domains.

This is better aligned with what is expected of the parser at test time: there will be no

fine-tuning on real target domains at test time so there should not be any fine-tuning
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on simulated ones at train time either. Moreover, Givoli and Reichart (2019) treat the

division of training domains to virtual train and test domains as a hyper-parameter,

which is possible for a handful of domains, but problematic when dealing with hundreds

of domains as is the case for text-to-SQL parsing.

Meta-Learning for NLP Meta-learning has been receiving soaring interest in the

machine learning community. Unlike conventional supervised learning, meta-learning

operates on tasks, instead of data points. Most previous work (Vinyals et al., 2016;

Ravi and Larochelle, 2016; Finn et al., 2017) has focused on few-shot learning where

meta-learning helps address the problem of learning to learn fast for adaptation to a new

task or domain. Applications of meta-learning in NLP are cast in a similar vein and

include machine translation (Gu et al., 2018) and relation classification (Obamuyide

and Vlachos, 2019). The meta-learning framework however is more general, with the

algorithms or underlying ideas applied, e.g., to continual learning (Gupta et al., 2020),

semi-supervised learning (Ren et al., 2018), multi-task learning (Yu et al., 2020b) and,

as in our case, domain generalization (Li et al., 2018a).

Very recently, MAML was applied to semantic parsing tasks (Huang et al., 2018;

Guo et al., 2019a; Sun et al., 2019). These approaches simulate few-shot learning

scenarios in training by constructing a pseudo-task for each example. Given an example,

similar examples are retrieved from the original training set. MAML then encourages

strong performance on the retrieved examples after an update on the original example,

simulating test-time fine-tuning. Lee et al. (2019) use matching networks (Vinyals

et al., 2016) to enable one-shot text-to-SQL parsing where tasks for meta-learning

are defined by SQL templates, i.e., a parser is expected to generalize to a new SQL

template with one example. In contrast, the tasks we construct for meta-learning aim

to encourage generalization across domains, instead of adaptation to a new task with

one (or few) examples. One clear difference lies in how meta-train and meta-test sets

are constructed. In previous work (e.g., Huang et al. 2018), these come from the same

domain whereas we simulate domain shift and sample different sets of domains for

meta-train and meta-test.

Domain Generalization Although the notion of domain generalization has been less

explored in semantic parsing, it has been studied in other areas such as computer vision

(Ghifary et al., 2015; Zaheer et al., 2017; Li et al., 2018b). Recent work (Li et al., 2018a;

Balaji et al., 2018) employed optimization-based meta-learning to handle domain shift
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issues in domain generalization. We employ the meta-learning objective originally

proposed in Li et al. (2018a), where they adapt MAML to encourage generalization in

unseen domains (of images). Based on this objective, we propose a cheap alternative

that only requires first-order gradients, thus alleviating the overhead of computing

second-order derivatives required by MAML.

3.6 Summary and Discussion

The task of cross-domain semantic parsing has been gaining momentum in recent years.

To address the environment grounding and optimization mismatch problem that arise

in this setting, we propose a new architecture, namely RAT-SQL, for cross-domain

semantic parsing, and a model-agnostic training algorithm, namely DG-MAML, to

boost domain generalization. Specifically, RAT-SQL handles environment grounding

by addressing the schema encoding and linking challenges. Central to RAT-SQL is

the relation-aware self-attention mechanism which jointly learns schema and question

representations based on their alignment with each other and schema relations. To

take the discrepancy between training and test domains into account during training,

DG-MAML learns from a set of virtual cross-domain parsing tasks, instead of learning

from individual data points. By optimizing towards better target-domain performance

in each simulated task, DG-MAML encourages a parser to generalize better to unseen

domains.

Follow-Up Work Since the publication of RAT-SQL, follow-up work have built up-

graded version on top of it using pre-training technique or better decoders, or adapted

it for more complex settings. Deng et al. (2020) propose a set of pre-training tasks

(such as column grounding, value grounding) which are specifically designed to help

RAT-SQL perform schema-linking. Yu et al. (2020a) augment RAT-SQL with better

input representations which are obtained by pre-training over massive synthetically-

generated parallel data based on handcrafted rules. Further in this direction, we also

explored ways to pre-train RAT-SQL using synthetic data generated within a data-driven

two-stage generative framework in Wang et al. (2021d). The original RAT-SQL use a

grammar-based decoder to enforce syntactic constraints of SQL, but this design choice

comes at the cost of efficiency as the decoder is hard to run in parallel. To address

the efficiency issue, some recent work has tried to improve the decoder of RAT-SQL.

Scholak et al. (2020) propose an efficient Transformer-based decoder which relies on
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relation-aware attention to incorporate certain syntactic constraints. Rubin and Berant

(2020) introduce a semi-autoregressive decoder which generates SQL programs in a

bottom-up, rather than top-down autoregressive, manner. The speedup comes from the

bottom-up strategy which allows decoding all sub-trees of a certain height in parallel.

In this chapter, RAT-SQL is only applied on the single-turn setting where a user express

an intent via one utterance. Yu et al. (2021) adapt RAT-SQL to more complex conversa-

tional settings where a user has multiple interactions with an interface, and the adapted

RAT-SQL achieves state-of-the-art performance.

RAT-SQL can also be generalized to program formalisms other than SQL, as the

core component of relation-aware encoding is very general and not restricted to SQL.

In Chapter 5, we adapt RAT-SQL to logical form based semantic parsing and it obtains

state-of-the-art performance as well.

Reproducibility The original version of RAT-SQL is available at https://github.

com/Microsoft/rat-sql. The updated version of RAT-SQL which contains the

implementations of DG-MAML and supports SQL value prediction is available at

https://github.com/berlino/tensor2struct-public.

https://github.com/Microsoft/rat-sql
https://github.com/Microsoft/rat-sql
https://github.com/berlino/tensor2struct-public




Chapter 4

Learning from Denotations

The bottleneck of semantic parsing, like many other areas in NLP, is the lack of

enough labeled data while contemporary neural systems are typically data-hungry.

Specifically, in semantic parsing, we aim to build parsers that can perform well on

some target domains of interest, but data collection on target domains are typically

expensive. In the previous chapter, we built cross-domain semantic parsers, along

with a specialized training algorithm, so that the parsers can generalize well to unseen

target domains, without the need to collect any form of labeled data from the target

domains. Cross-domain generalization is indeed appealing but there seems to be a

performance upper bound on cross-domain semantic parsers as many questions require

domain-specific knowledge (Suhr et al., 2020). In this and the following chapter, we

explore an orthogonal direction on how to take advantage of cheaper labeled data, or

unlabeled data.

Annotating programs (e.g., SQL) for given utterances would require expert knowl-

edge of programs (e.g., knowing how to program in SQL) and the environment against

which they are executed (e.g., knowing which table/columns from a relational database

to use). In some cases, where the environments are simple for humans to interpret

(e.g., Web tables), it is possible to reduce the burden of annotation by only labeling

answers (or denotations) that correspond to questions1. However, the learning signals

provided by denotations are much weaker than those from programs, which poses a

great generalization challenge for a semantic parser to learn from them. In this chapter,

we seek a parser that can take better advantage of question-denotation pairs in this

weakly supervised semantic parsing setting (Liang et al., 2011; Berant et al., 2013) such

1Note that this assumption does not hold for large and complex relational databases where answers
(i.e., execution results of SQL) could be long, thus hard for manual annotation.
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Question:
��"���$ ���!�������� ��� ��������� �� 	 ���$ "���

Abstract Program: ������� ���"����� ���� ������ �

Correct	Program:
������� ���� ��������� � 	 ���$�� ��� ������!�� �

Instantiation

Execution
Denotation: 0

Spurious Programs:
�����������!�� ��������#� ������"��� ��� ������!�� �� ��� ������!�� ��
������� ������� ������"��� ��� ������!�� �� ��� ������!�� �

Inconsistent Program:
������� ���� ��������� � 	 ���$�� ��� ����������

Figure 4.1: After generating an abstract program for a question, our parser finds align-

ments between slots (with prefix #) and question spans. Based on the alignment, it

instantiates each slot and a complete program is executed against a table to obtain a

denotation. Spurious programs can also execute to the correct denotation, but their slots

cannot be well-aligned.

that the annotation effort for building natural language interfaces is reduced.

Two major unique challenges arise when learning from denotations:

• training of a semantic parser requires exploring a large search space of possible

programs to find those which are consistent, i.e., execute to correct denotations;

• a parser should be robust to spurious programs which accidentally execute to

correct denotations, but do not reflect the semantics of a question.

To handle these challenges, we propose a weakly-supervised neural semantic parser that

features structured latent alignments to bias learning towards correct programs which

are consistent but not spurious.
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Our intuition is that correct programs should respect certain constraints, were they

to be aligned to the question text, while spurious and inconsistent programs do not. For

instance, in Figure 4.1, the answer to the question (“0”) can be obtained by executing

the correct program which selects the number of Turkey’s silver medals. However, the

same answer can be also obtained by the spurious programs shown in the figure. The

first program can be paraphrased as: find the row with the largest number of silver

medals and then select the number of silver medals from the previous row. The spurious

programs differ from the correct one in that they repeatedly use the column “silver”.

Whereas, in the question, the word “silver” only refers to the target column containing

the answer, it also mistakenly triggers the appearance of the column “silver” in the row

selection condition. This constraint, i.e., that a text span within a question cannot trigger

two semantically distinct operations (e.g., selecting target rows and target columns)

can provide a useful inductive bias. We propose to capture structural constraints by

modeling the alignments between programs and questions explicitly as structured latent

variables.

Considering the large search space of possible programs, an alignment model that

takes into account the full range of correspondences between program operations and

question spans would be very expensive. To make the process tractable, we introduce

a two-stage approach that features abstract programs. Specifically, we decompose

semantic parsing into two steps: 1) a natural language utterance is first mapped to

an abstract program which is a composition of high-level operations; 2) the abstract

program is then instantiated with low-level operations that usually involve relations and

entities specific to the environment at hand. This decomposition is motivated by the

observation that only a small number of sensible abstract programs can be instantiated

into consistent programs. Similar ideas of using abstract meaning representations have

been explored with fully-supervised semantic parsers (Dong and Lapata, 2018; Finn

et al., 2017) and in other related tasks (Goldman et al., 2018; Herzig and Berant, 2018;

Nye et al., 2019).

For structured data in tabular format, we abstract two basic operations of row selec-

tion and column selection from programs: these are handled in the second (instantiation)

stage. As shown in Figure 4.1, the question is first mapped to the abstract program

“select (#row slot, #column slot)” whose two slots are subsequently instantiated with

filter conditions (row slot) and a column name (column slot). During the instantiation of

abstract programs, each slot should refer to the question to obtain its specific semantics.

In Figure 4.1, row slot should attend to “nation of Turkey” while column slot needs to
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attend to “silver medals”. The structural constraint discussed above now corresponds to

assuming that each span in a question can be aligned to a unique row or column slot.

Under this assumption, the instantiation of spurious programs will be discouraged. The

uniqueness constraint would be violated by both spurious programs in Figure 4.1, since

“column:silver” appears in the program twice but can be only aligned to the span “silver

medals” once.

The first stage (i.e., mapping a question onto an abstract program) is handled

with a sequence-to-sequence model. The second stage (i.e., program instantation) is

approached with local classifiers: one per slot in the abstract program. The classifiers

are conditionally independent given the abstract program and a latent alignment. Instead

of marginalizing out alignments, which would be intractable, we use structured attention

(Kim et al., 2017), i.e., we compute the marginal probabilities for individual span-slot

alignment edges and use them to weight the input to the classifiers. As we discuss below,

the marginals in our constrained model are computed with dynamic programming.

We perform experiments on two open-domain question answering datasets in the set-

ting of learning from denotations. Our model achieves an execution accuracy of 44.5%

in WIKITABLEQUESTIONS and 79.3% in WIKISQL, which both surpass previous

state-of-the-art methods in the same weakly-supervised setting. In WIKISQL, our

parser is better than recent supervised parsers that are trained on question-program

pairs.

Contributions From this chapter, we begin to explore weaker forms of supervision

than utterance-program pairs. In this chapter, we aim to utilize denotations of programs,

rather than programs, as they are easier to obtain for certain forms of knowledge (e.g.,

tabular knowledge). We approach the problem of learning from denotation from the

perspective of incorporating structured inductive biases into a parser:

• we introduce an alignment model as a means of differentiating between correct

and spurious programs;

• we propose a neural semantic parser that performs tractable alignments by first

mapping questions to abstract programs.

Empirically, the parser achieve state-of-the-art performance on two semantic parsing

benchmarks, namely WIKITABLEQUESTIONS and WIKISQL, at the time of publication.

The code for reproducing the results in this chapter is available at https://github.

com/berlino/weaksp_em19.

https://github.com/berlino/weaksp_em19
https://github.com/berlino/weaksp_em19
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4.1 Background

Given table t, our task is to map a natural utterance x to program z, which is then

executed against a table to obtain denotation [[z]]t = d. We train our parser only based

on d without access to correct programs z∗. Our experiments focus on two benchmarks,

namely WIKITABLEQUESTIONS (Pasupat and Liang, 2015) and WIKISQL (Zhong

et al., 2017) where each question is paired with a Wikipedia table and a denotation.

Figure 4.1 shows a simplified example taken from WIKITABLEQUESTIONS.

4.1.1 Grammars

Executable programs z that can query tables are defined according to a language.

Specifically, the search space of programs is constrained by grammar rules so that it can

be explored efficiently. We adopt the the variable-free language of Liang et al. (2018)

and define an abstract grammar and an instantiation grammar which decompose the

generation of a program in two stages.2

The first stage involves the generation of an abstract version of a program which, in

the second stage, gets instantiated. Abstract programs only consider compositions of

high-level functions, such as superlatives and aggregation, while low-level functions

and arguments, such as filter conditions and entities, are taken into account in the next

step. In our table-based datasets, abstract programs do not include two basic operations

of querying tables: row selection and column selection. These operations are handled

at the instantiation stage. In Figure 4.1 the abstract program has two slots for row

and column selection, which are filled with the conditions “column:nation = Turkey”

and “column:silver” at the instantiation stage. The two stages can be easily merged

into one step when conducting symbolic combinatorial search. The motivation for the

decomposition is to facilitate the learning of our neural semantic parser and the handling

of structured alignments.

Abstract Grammar Our abstract grammar has five basic types: ROW, COLUMN,

STRING, NUMBER, and DATE; COLUMN is further sub-typed into STRING COLUMN,

NUMBER COLUMN, and DATE COLUMN; other basic types are augmented with LIST to

represent a list of elements like LIST[ROW]. Arguments and return values of functions

are typed using these basic types.

2We also extend their grammar to additionally support operations of conjunction and disjunction.
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STRING      select (ROW, COLUMN) 

COLUMN      #column_slot ROW      first (LIST[ROW]) 

LIST[ROW]      #rows_slot 

Abstract Program: 
select (first (#rows_slot) #column_slot) 

Derivation Tree:

Figure 4.2: An abstract program and its derivation tree. Capitalized words indicate types

of function arguments and their return value.

Function composition can be defined recursively based on a set of production rules,

each corresponding to a function type. For instance, function ROW→ first(LIST[ROW])

selects the first row from a list of rows and corresponds to production rule “ROW→
first”.

The abstract grammar has two additional types for slots (aka terminal rules) which

correspond to row and column selection:

LIST[ROW]→ #row slot
COLUMN→ #column slot

An example of an abstract program and its derivation tree is shown in Figure 4.2.

We linearize the derivation by traversing it in a left-to-right depth-first manner. We

represent the tree in Figure 4.2 as a sequence of production rules: “ROOT→ STRING,

STRING→ select, ROW→ first”, LIST[ROW]→ #row slot, COLUMN→ #column slot”.

The first action is always to select the return type for the root node.

Given a specific table t, the abstract grammar Ht will depend on its column types.

For example, if the table does not have number cells, “max/min” operations will not be

executable.

Instantiation Grammar A column slot is directly instantiated by selecting a column;

a row slot is filled with one or multiple conditions (COND) which are jointed together

with conjunction (OR ) and disjunction (AND ) operators:

COND→ COLUMN OPERATOR VALUE

#row slot→ COND (AND COND)*
#row slot→ COND (OR COND)*
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where OPERATOR ∈ [>,<,=,≥,≤] and VALUE is an entity in the form of a string

(‘UK’), a number (e.g., ‘3’), or a date (e.g., ‘July 1993’). A special condition #row slot→
all rows is defined to signify that a program queries all rows.

4.1.2 Search for Consistent Programs

A problematic aspect of learning from denotations is that, since annotated programs

are not available (e.g., for WIKITABLEQUESTIONS), we have no means to directly

evaluate the proposed grammar. As an evaluation proxy, we measure the coverage of

our grammar in terms of consistent programs. Specifically, we exhaustively search

for all consistent programs for each question in the training set. While the space of

programs is exponential, we observed that abstract programs that can be instantiated

into correct programs are not very complex in terms of the number of production rules.

When enumerating programs, we restrict the number of production rules at the first

stage of generating abstract programs, and in this way the search process becomes

tractable.

We find that 83.6% of questions in WIKITABLEQUESTIONS are covered by at

least one consistent program. However, each question eventually has 200 consistent

programs on average and most of them are spurious. Treating them as ground truth

poses a great challenge for learning a semantic parser. The coverage for WIKISQL is

96.6% and each question generates 84 consistent programs on average.

Another important observation is that there is only a limited number of abstract

programs that can be instantiated into consistent programs. The number of such abstract

programs is 23 for WIKITABLEQUESTIONS and 6 for WIKISQL, suggesting that there

are a few patterns underlying several utterances. This motivates us to design a semantic

parser that first maps utterances to abstract programs. For the sake of generality, we do

not restrict our parser to abstract programs in the training set.3

4.2 Model

After obtaining consistent programs z for each question through offline search, we next

show how to learn a parser that can generalize to new questions and tables.

3That is, generating abstract programs is not reduced to a multi-label classification problem. We
elaborate on this later.
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4.2.1 Training and Inference

Our learning objective J is to maximize the log-likelihood of the marginal probability

of all consistent programs, which are generated by mapping an utterance x to an interim

abstract program h:

J = log{ ∑
h∈Ht

p(h|x, t) ∑
[[z]]=d

p(z|x, t,h)}. (4.1)

During training, our model only needs to focus on abstract programs that have

successful instantiations of consistent programs and it does not have to explore the

whole space of possible programs.

At test time, a parser chooses the program ẑ with the highest probability:

ĥ, ẑ = argmax
h∈Ht , z

p(h|x, t)p(z|x, t,h). (4.2)

To make it more efficient, we only choose top-k abstract programs to instantiate through

beam search. ẑ is then executed to obtain its denotation as the final prediction.

Next, we will explain the basic components of our neural parser. Our model first

encodes a question and a table with an input encoder; then generates abstract programs

with a seq2seq model. Finally, these abstract programs are instantiated while relying on

a structured alignment model.

4.2.2 Input Encoder

Each word in an utterance is mapped to a distributed representation through an embed-

ding layer. Following previous work (Neelakantan et al., 2017; Liang et al., 2018), we

also add an indicator feature specifying whether the word appears in the table. This

feature is mapped to a learnable vector. Additionally, in WIKITABLEQUESTIONS, we

use POS tags from the CoreNLP annotations released with the dataset and map them to

vector representations. The final representation for a word is the concatenation of the

vectors above. A bidirectional LSTM (Hochreiter and Schmidhuber, 1997) is then used

to obtain a contextual representation llli for the ith word.

A table is represented by a set of columns. Each column is encoded by averaging

the embeddings of words under its column name. We also have a column type feature

(i.e., number, date or string) and an indicator feature signaling whether at least one

entity in the column appears in the utterance.
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4.2.3 Generating Abstract Programs

Instead of extracting abstract programs as templates, similarly to Xu et al. (2017) and

Finn et al. (2017), we generate them with a seq2seq model. Although template-based

approaches would be more efficient in practice, a seq2seq model is more general since

it could generate unseen abstract programs which fixed templates could not otherwise

handle.

Our goal is to generate a sequence of production rules that lead to abstract programs.

During decoding, the hidden state ggg j of the jth timestep is computed based on the

previous production rule, which is mapped to an embedding aaa j−1. We also incorporate

an attention mechanism (Luong et al., 2015) to compute a contextual vector bbb j. Finally,

a score vector sss j is computed by feeding the concatenation of the hidden state and

context vector to a multilayer perceptron (MLP):

ggg j = LSTM(ggg j−1,aaa j−1)

bbb j = Attention(ggg j, lll)

sss j = MLP1([ggg j;bbb j])

p(a j|x, t,a< j) = softmaxa j(sss j)

(4.3)

where the probability of production rule a j is computed by the softmax function.

According to our abstract grammar, only a subset of production rules will be valid at

the j-th time step. For instance, in Figure 4.2, production rule “STRING→ select” will

only expand to rules whose left-hand side is ROW, which is the type of the first argument

of select. In this case, the next production rule is “ROW→ first”. We thus restrict the

normalization of softmax to only focus on these valid production rules. The probability

of generating an abstract program p(h|x, t) is simply the product of the probability of

predicting each production rule ∏ j p(a j|x, t,a< j).

After an abstract program is generated, we need to instantiate slots in abstract

programs. So the desired representation of slots should depend on the meaning of

abstract programs. To achieve this, our model first encodes the abstract program using a

bi-directional LSTM, similar to Dong and Lapata (2018). As a result, the representation

of a slot is contextually aware of the entire abstract program .

4.2.4 Instantiating Abstract Programs

To instantiate an abstract program, each slot must obtain its specific semantics from

the question. We model this process by an alignment model which learns the corre-
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spondence between slots and question spans. Formally, we use a binary alignment

matrix AAA with size m×n×n, where m is the number of slots and n is the number of

tokens. In Figure 4.1, the alignment matrix will only have AAA0,6,8 = 1 and AAA1,2,3 = 1

which indicates that the first slot is aligned with “nation of Turkey”, and the second slot

is aligned with “silver medals”. The second and third dimension of the matrix represent

the start and end position of a span.

We model alignments as discrete latent variables and condition the instantiation

process on the alignments as follows:

∑
[z]=d

p(z|x, t,h) = ∑
AAA

p(AAA|x, t,h) ∑
[z]=d

p(z|x, t,h,AAA). (4.4)

We will first discuss the instantiation model p(z|x, t,h,AAA) and then elaborate on how

to avoid marginalization in the next section.

Each slot in an abstract program can be instantiated by a set of candidates follow-

ing the instantiation grammar. For efficiency, we use local classifiers to model the

instantiation of each slot independently:

p(z|x, t,h,AAA) = ∏
s∈S

p(s→ c|x, t,h,AAA), (4.5)

where S is the set of slots and c is a candidate following our instantiation grammar.

“s→ c” represents the instantiation of slot s into candidate c.

Recall that there are two types of slots, one for rows and one for columns. All

column names in the table are potential instantiations of column slots. We represent

each column slot candidate by the average of the embeddings of words in the column

name. Based on our instantiation grammar in Section 4.1.1, candidates for row slots

are represented as follows: 1) each condition is represented with the concatenation

of the representations of a column, an operator, and a value. For instance, condition

“string column:nation = Turkey” in Figure 4.1 is represented by vector representations

of the column ‘nation’, the operator ‘=’, and the entity ‘Turkey’; 2) multiple conditions

are encoded by averaging the representations of all conditions and adding a vector

representation of AND /OR to indicate the relation between them.

For each slot, the probability of generating a candidate is computed with softmax

normalization on a score function:

p(s→ c|x, t,h,AAA) ∝ exp{MLP([sss;ccc])}, (4.6)

where sss is the representation of the span that slot s is aligned with, and ccc is the

representation of candidate c. The representations sss and ccc are concatenated and fed to a
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MLP. We use the same MLP architecture but different parameters for column and row

slots.

4.2.5 Structured Attention

We first formally define a few structural constraints over alignments and then explain

how to incorporate them efficiently into our parser.

The intuition behind our alignment model is that row and column selection opera-

tions represent distinct semantics, and should therefore be expressed by distinct natural

language expressions. Hence, we propose the following constraints:

Unique Span In most cases, the semantics of a row selection or a column selection is

expressed uniquely with a single contiguous span:

∀k ∈ [1, |S|], ∑
i, j

AAAk,i, j = 1, (4.7)

where |S| is the number of slots.

No Overlap Spans aligned to different slots should not overlap. Formally, at most

one span that contains word i can be aligned to a slot:

∀i ∈ [1,n], ∑
k, j

AAAk,i, j ≤ 1. (4.8)

As an example, the alignments in Figure 4.1 follow the above constraints. Intuitively,

the one-to-one mapping constraint aims to assign distinct and non-overlapping spans to

slots of abstract programs. To further bias the alignments and improve efficiency, we

impose additional restrictions: (1) a row slot must be aligned to a span that contains an

entity since conditions that instantiate the slot would require entities for filtering; (2)

a column slot must be aligned to a span with length 1 since most column names only

have one word.

Marginalizing out all AAA in Equation (4.4) would be very expensive considering the

exponential number of possible alignments. We approximate the marginalization by

moving the outside expectation directly inside over AAA. As a result, we instead optimize

the following objective:

J ≈ log
{

∑
h∈Ht

p(h|x, t) ∑
[[z]]=d

p(z|x, t,h,E[AAA])
}
, (4.9)

where E[AAA] are the marginals of AAA with respect to p(AAA|x, t,h).
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The idea of using differentiable surrogates for discrete latent variables has been

used in many other works like differentiable data structures (Grefenstette et al., 2015;

Graves et al., 2014) and attention-based networks (Bahdanau et al., 2015; Kim et al.,

2017). Using marginals E[AAA] can be viewed as structured attention between slots and

question spans.

The marginal probability of the alignment matrix AAA can be computed efficiently

using dynamic programming (see Täckström et al. 2015 for details). An alignment

is encoded into a path in a weighted lattice where each vertex has 2|S| states to keep

track of the set of covered slots. The marginal probability of edges in this lattice can be

computed by the forward-backward algorithm (Wainwright et al., 2008). The lattice

weights, represented by a scoring matrix MMM ∈ Rm×n×n for all possible slot-span pairs,

are computed using the following scoring function:

MMMk,i, j = MLP2([rrr(k);span[i : j]]), (4.10)

where rrr(k) represents the kth slot and span[i : j] represents the span from word i to j.

Recall that we obtain rrr(k) by encoding a generated abstract program. A span is repre-

sented by averaging the representations of the words therein. These two representations

are concatenated and fed to a MLP to obtain a score. Since E[AAA] is not discrete anymore,

the aligned representation of slot sss in Equation (4.6) becomes the weighted average of

representations of all spans in the set.

4.3 Experiments

We evaluated our model on two semantic parsing benchmarks, WIKITABLEQUESTIONS

and WIKISQL. We compare against two common baselines to demonstrate the effective-

ness of using abstract programs and alignment. We also conduct detailed analysis which

shows that structured attention is highly beneficial, enabling our parser to differentiate

between correct and spurious programs. Finally, we break down the errors of our parser

so as to examine whether structured attention is better at instantiating abstract programs.

4.3.1 Experimental Setup

Datasets WIKITABLEQUESTIONS contains 2,018 tables and 18,496 utterance-denotation

pairs. The dataset is challenging as 1) the tables cover a wide range of domains and un-

seen tables appear at test time; and 2) the questions involve a variety of operations such
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Supervised by Denotations Dev. Test

Pasupat and Liang (2015) 37.0 37.1

Neelakantan et al. (2017) 34.1 34.2

Haug et al. (2018) — 34.8

Zhang et al. (2017) 40.4 43.7

Liang et al. (2018) 42.6 43.9

Agarwal et al. (2019) 43.2 44.1

Typed Seq2Seq 37.3 38.3

Abstract Programs

f.w. standard attention 39.4 41.4

f.w. structured attention 43.7 44.5

Table 4.1: Results on WIKITABLEQUESTIONS. f.w. stands for slots filled with.

as superlatives, comparisons, and aggregation (Pasupat and Liang, 2015). WIKISQL

has 24,241 tables and 80,654 utterance-denotation pairs. The questions are logically

simpler and only involve aggregation, column selection, and conditions. The original

dataset is annotated with SQL queries, but we only use the execution result for training.

In both datasets, tables are extracted from Wikipedia and cover a wide range of domains,

and training and testing tables are disjoint.

Entity extraction is important during parsing since entities are used as values in

filter conditions during instantiation. String entities are extracted by string matching

utterance spans and table cells. In WIKITABLEQUESTIONS, numbers and dates are

extracted from the CoreNLP (Manning et al., 2014) annotations released with the dataset.

WIKISQL does not have entities for dates, and we use string-based normalization to

deal with numbers.

Implementation We obtained word embeddings by a linear projection of GloVe

pre-trained embeddings (Pennington et al., 2014) which were fixed during training.

Attention scores were computed based on the dot product between two vectors. Each

MLP is a one-hidden-layer perceptron with ReLU as the activation function. Dropout

(Srivastava et al., 2014) was applied to prevent overfitting. All models were trained with

Adam (Kingma and Ba, 2015). Implementations of abstract and instantiation grammars

were based on AllenNLP (Gardner et al., 2017).
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4.3.2 Baselines

Aside from comparing our model against previously published approaches, we also

implemented the following baselines:

Typed Seq2Seq Programs were generated using a sequence-to-sequence model with

attention (Dong and Lapata, 2016). Similar to Krishnamurthy et al. (2017), we con-

strained the decoding process so that only well-formed programs are predicted. This

baseline can be viewed as merging the two stages of our model into one stage where

generation of abstract programs and their instantiations are performed with a shared

decoder.

Standard Attention The aligned representation of slot s in Equation (4.6) is computed

by a standard attention mechanism: sss = Attention(rrr(s), lll) where rrr(s) is the representa-

tion of slot s from abstract programs. Each slot is aligned independently with attention,

thus there are no global structural constraints on alignments.

4.3.3 Main Results

Results on WIKITABLEQUESTIONS are shown in Table 4.1. The structured-attention

model achieves the best performance, compared against the two baselines and previous

approaches. The standard attention baseline with abstract programs is superior to the

typed Seq2Seq model, demonstrating the effectiveness of decomposing semantic parsing

into two stages. Results on WIKISQL are shown in Table 4.2. The structured-attention

model is again superior to our two baseline models. Interestingly, its performance

surpasses previously reported weakly-supervised models (Liang et al., 2018; Agarwal

et al., 2019) and is even on par with fully supervised ones (Dong and Lapata, 2018).

The gap between the standard attention baseline and the typed Seq2Seq model

is not very large on WIKISQL, compared to WIKITABLEQUESTIONS. Recall from

Section 4.1.2 that WIKISQL only has 6 abstract programs that can be successfully

instantiated. For this reason, our decomposition alone may not be very beneficial if

coupled with standard attention. In contrast, our structured-attention model consistently

performs much better than both baselines.

For complete comparison with previous work, we also provide the performance of

ensembling our best model that utilizes abstract programs and structured attention in

Table 4.3. By using the same ensemble size, our model consistently achieves better
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Supervised by Programs Dev. Test

Zhong et al. (2017) 60.8 59.4

Wang et al. (2017a) 67.1 66.8

Xu et al. (2017) 69.8 68.0

Huang et al. (2018) 68.3 68.0

Yu et al. (2018a) 74.5 73.5

Sun et al. (2018b) 75.1 74.6

Dong and Lapata (2018) 79.0 78.5

Shi et al. (2018) 84.0 83.7

Supervised by Denotations Dev. Test

Liang et al. (2018) 72.2 72.6

Agarwal et al. (2019) 74.9 74.8

Typed Seq2Seq 74.5 74.7

Abstract Programs

f.w. standard attention 75.2 75.3

f.w. structured attention 79.4 79.3

Table 4.2: Results on WIKISQL. f.w.: slots filled with.

performance compared with Liang et al. (2018) and Agarwal et al. (2019) .

4.3.4 Analysis of Spuriousness

To understand how well structured attention can help a parser differentiate between

correct and spurious programs, we analyzed the posterior distribution of consistent

programs given a denotation: p(z|x, t,d) where [[z]] = d.

WIKISQL includes gold-standard SQL annotations, which we do not use in our

experiments but exploit here for analysis. Specifically, we converted the annotations

released with WIKISQL to programs licensed by our grammar. We then computed the

log-probability of these programs according to the posterior distribution as a measure of

how well a parser can identify them amongst all consistent programs log∑z∗ p(z∗|x, t,d),
where z∗ denotes correct programs. The average log-probability assigned to correct

programs by structured and standard attention is -0.37 and -0.85, respectively. This gap

confirms that structured attention can bias our parser towards correct programs during
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Models WIKITABLEQUESTIONS WIKISQL

Liang et al. (2018) 46.3 74.2

Agarwal et al. (2019) 46.9 76.9

Our model 47.3 81.7

Table 4.3: Results of ensembled models. The ensemble size for WIKITABLEQUES-

TIONS and WIKISQL are 10 and 5 respectively.

Error Types standard structured

Abstraction Error 19.2 20.0

Instantiation Error 41.5 36.2

Coverage Error 39.2 43.8

Table 4.4: Proportion of errors on the development set in WIKITABLEQUESTIONS.

learning.

4.3.5 Error Analysis

We further manually inspected the output of our structured-attention model and the

standard attention baseline in WIKITABLEQUESTIONS. Specifically, we randomly

sampled 130 error cases independently from both models and classified them into three

categories.

Abstraction Errors If a parser fails to generate an abstract program, then it is impos-

sible for it to instantiate a consistent complete program.

Instantiation Errors These errors arise when abstract programs are correctly gener-

ated, but are mistakenly instantiated either by incorrect column names or filter condi-

tions.

Coverage Errors These errors arise from implicit assumptions made by our parser:

a) there is a long tail of unsupported operations that are not covered by our abstract

programs; b) if entities are not correctly identified and linked, abstract programs cannot

be correctly instantiated.
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Table 4.4 shows the proportion of errors attested by the two attention models. We

observe that structured attention suffers less from instantiation errors compared against

the standard attention baseline, which points to the benefits of the structured alignment

model.

4.4 Related Work

Learning from Denotations To improve the efficiency of searching for consistent

programs, Zhang et al. (2017) use a macro grammar induced from cached consistent

programs. Unlike Zhang et al. (2017) who abstract entities and relations from logical

forms, we take a step further and abstract the computation of row and column selection.

Our work also differs from Pasupat and Liang (2016) who resort to manual annotations

to alleviate spuriousness. Instead, we equip our parser with an inductive bias to rule out

spurious programs during training. Recently, reinforcement learning based methods

address the computational challenge by using a memory buffer (Liang et al., 2018)

which stores consistent programs and an auxiliary reward function (Agarwal et al., 2019)

which provides feedback to deal with spurious programs. Guu et al. (2017) employ

various strategies to encourage even distributions over consistent programs in cases

where the parser has been misled by spurious programs.

Modelling Alignments In classical semantic parsing systems, alignments are explic-

itly and naturally accommodated within certain grammar formalisms. For example,

Zettlemoyer and Collins (2005) leverage CCG where alignments are intrinsic properties

of CCG lexicons. Wong and Mooney (2007b) employ synchronous context-free gram-

mars to model the correspondences between natural questions and lambda calculus.

These grammar formalisms account for full correspondences between natural language

and programs in the sense that alignments are built in a hierarchical manner where

alignments at all levels, from word-level to phrase-level, are jointly considered. This is

of course highly desirable based on the common belief that natural language, as well as

programs, are built with hierarchical compositions of primitives (such as words). How-

ever, computational systems based on such grammar formalisms are typically expensive

as the space of full correspondences is very large. Our work can be situated between

these symbolic systems and neural seq2seq with attention networks (Bahdanau et al.,

2015) in the sense that it models partial correspondences of certain fragments, i.e., NL

and program fragments about row and column selection in this chapter. This allows for
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more tractable computation as well as retaining end-to-end training of seq2seq models.

4.5 Summary and Discussion

To address the challenges that arise in the setting of learning from denotations, we

proposed a neural semantic parser that features abstract programs and latent structured

alignments. Our parser achieves state-of-the-art performance on two benchmarks,

WIKITABLEQUESTIONS and WIKISQL. Empirical analysis shows that the inductive

bias introduced by the alignment model helps our parser differentiate between correct

and spurious programs. As a result, the annotation effort for building semantic parsers

can be indeed reduced by taking better advantage of cheap supervision of denotations.

As we mentioned before, the assumption that denotations are easier to obtain than

programs is only true in cases where the environments are simple enough for humans to

quickly interpret. Hence, in this chapter, we will mainly focus on semantic parsing tasks

where the environments are small Web tables, instead of large and complex relational

databases or knowledge bases.

Structured Alignments Although we use structured alignments to mostly enforce

the uniqueness constraint described above, other types of inductive biases can be useful

and could be encoded in our two-stage framework. For example, we could replace the

uniqueness constraint with modeling the number of slots aligned to a span, or favor

sparse alignment distributions. Crucially, the two-stage framework makes it easier

to inject prior knowledge about datasets and formalisms while maintaining efficiency.

Alignments can exhibit different properties (e.g., monotonicity or bijectivity), depending

on the meaning representation language (e.g., logical forms or SQL), the definition of

abstract programs, and the domain at hand. These properties can be often captured

within a probabilistic alignment model and hence provide a useful inductive bias to the

parser. In Chapter 6, we will introduce another semantic parser that can capture latent

segment-to-segment alignments for generalization.

Pre-trained Representations Though we do not leverage pre-trained representations

such as BERT (Devlin et al., 2019) in experiments, they have shown to be very useful

for the task of learning from denotations in later work (Min et al., 2019b). Recent work

on table-specific representations (Yin et al., 2020; Yu et al., 2020a) shows that these

specialized representations can further resolve the issue of spurious programs. Note that
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these representations can be easily coupled with our parser by upgrading the embedding

layer to a pre-trained encoder. Concretely, in Yu et al. (2020a), we show that, when our

parser is augmented with specialized pre-trained representations, it can achieve new

state-of-the-art performance.

In the next chapter, we take a step further in the same direction of utilizing weak

supervision, and explore ways of taking advantage of unlabeled data. Instead of baking

latent alignments (i.e., model biases) into the parser, we use a different methodology of

developing specialized training objectives (i.e., learning biases).





Chapter 5

Learning from Executions

Following the same thread as the previous chapter, we continue to study the ways of

utilizing examples that are cheaper to obtain than labeled ones for semantic parsing.

Specifically, we explore the possibility of further reducing the burden of annotation by

looking into the more extreme setting where there are no annotations available at all

(neither as programs or as denotations) for a large number of utterances. This semi-

supervised learning setting resembles a common real-life scenario where a small amount

of labeled examples results in a reasonably good semantic parser that is acceptable

by end-user upon deploying, and massive numbers of user utterances can be collected

afterwards (Iyer et al., 2017). Effectively utilizing the unlabeled data makes it possible

for a semantic parser to improve over time without human involvement, resulting in a

continuous positive feedback loop.

Our key observation is that not all candidate programs1 for an utterance will be

semantically valid. This implies that only some candidate programs can be executed

and obtain non-empty execution results.2 As illustrated in Figure 5.1, executability is a

weak signal that can differentiate between semantically valid and invalid programs. On

unlabeled utterances, we can encourage a parser to only focus on executable programs

ignoring non-executable ones. Moreover, the executability of a program can be obtained

from an executor for free without requiring human effort. Executability has previously

been used to guide the decoding of a semantic parser (Wang et al., 2018). We take a

step further to directly use this weak signal for learning from unlabeled utterances.

The assumption underlying executability is that programs, apart from satisfying

1As illustrated in Figure 2.1 of Chapter 2, candidate programs are those licensed by a particular
grammar.

2 In the rest of this chapter, we extend the meaning of ‘executability’, and use it to refer to the case
where a program is executable and obtains non-empty results.
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Question: list all 3 star rated thai restaurants

Program Candidates Gold Exe

select restaurant where star rating = thai 7 7

select restaurant where cuisine > 3 7 7

select restaurant where star rating = 3 7 3

select restaurant where star rating = 3

and cuisine = thai 3 3

Figure 5.1: Candidate programs for an utterance can be classified by executability (Exe);

note that the gold program is always in the set of executable programs. We propose to

ultilize the weak yet freely available signal of executablility for learning.

syntactic constraints, should also meet the semantic constraint of producing non-empty

outputs. Previous work successfully incorporates syntactic constraints by relying on a

type-based decoder (e.g., Krishnamurthy et al. (2017)), which only permits syntactically

valid programs during generation. However, semantic constraints cannot be captured by

typed-based decoders. For example, a type-based parser can generate a program “select

restaurant where star cuisine = 3”, which is syntactically meaningful as ‘cuisine’ can be

compared with any string, including ‘3’, in the condition clause. But this program will

be treated as invalid if it does not output any restaurant. 3

To learn from executability, we resort to marginal likelihood training, i.e., maximiz-

ing the marginal likelihood of all executable programs for an unlabeled NL utterance.

However, the space of all possible programs is exponentially large, as well as the

space of executable ones. Hence, simply marginalizing over all executable programs is

intractable. Typical approximations use beam search to retrieve a handful of (‘seen’)

programs, which are used to approximate the entire space. Using such approximations

can lead to optimization getting trapped in undesirable local minima. For example,

we observe that encouraging a model to exploit seen executable programs hinders

exploration and reinforces the preference for shorter programs, as discussed in Sec-

tion 5.4.3. This happens because shorter programs are both more likely to be among

‘seen’ programs (probably due to using locally-normalized autoregressive modeling) and

more likely to be executable. To alleviate these issues, we derive three new alternative

3 The executability assumption is strong, as a user might ask questions that have no answers. To relax
this assumption, we can add a binary variable to indicate whether a program would generate non-empty
output. The resulting learning problem is more challenging as more uncertainty needs to be incorporated.
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objectives, relying on a new interpretation of marginal likelihood training from the

perspective of posterior regularization. Our proposed objectives encode two kinds of

inductive biases:

• discouraging seen non-executable programs, which plays a similar role to

encouraging seen executable ones but does not share its drawback of hindering

exploration;

• encouraging sparsity among executable programs, which encourages a parser

to only focus on a subset of executable programs by softly injecting a sparsity

constraint. This is desirable, as there are only one or few correct programs for

each utterance (see Figure 5.1), and an accurate parser should assign probability

mass only to this subset.

We collectively call these objectives X-PR, as a shorthand for Execution-guided Poste-

rior Regularization.

We conduct experiments on two semantic parsing tasks: text-to-LF (logical form)

parsing over a knowledge base and text-to-SQL (Zelle and Mooney, 1996) parsing over

a relational database. Concretely, we evaluate our methods on the OVERNIGHT (Wang

et al., 2015) and GEOQUERY (Zelle and Mooney, 1996) datasets. We simulate the

semi-supervised learning setting by treating 70% of the training data as unlabeled.

Empirical results show that our method can substantially boost the performance of a

parser, trained only on labeled data, by utilizing a large amount of unlabeled data.

Contributions Following the same direction as the previous chapter, we continue to

explore weaker forms of supervision. In this chapter, we look at a more extreme form

of supervision – a large number of unlabeled examples that could be readily available in

certain real-life scenarios. We approach the problem of learning from these unlabeled

examples from the perspective of designing specialized training objectives:

• we show how to exploit unlabeled utterances by taking advantage of their exe-

cutability, which admittedly is a weak but free learning signal;

• to better learn from executability, we propose a set of new objectives based on

posterior regularization.

We empirically show that our method can help a base parser achieve substantially better

performance by utilizing unlabeled data on OVERNIGHT and GEOQUERY.
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5.1 Executability as Learning Signal

In this section, we formally define our semi-supervised learning setting and show how to

incorporate executability into the training objective whilst relying on the marginal like-

lihood training framework. We also present two conventional approaches to optimizing

marginal likelihood.

5.1.1 Problem Definition

Given a set of labeled NL-program pairs {(xl
i,y

l
i)}N

i=1 and a set of unlabeled NL utter-

ances {x j}M
j=1, where N and M denote the sizes of the respective datasets, we would like

to learn a neural parser p(y|x,θθθ), parameterized by θθθ, that maps utterances to programs.

The objective to minimize consists of two parts:

J =
1
N

N

∑
i=1

Lsup(xl
i,y

l
i)+λ

1
M

M

∑
j=1

Lunsup(xi) (5.1)

where Lsup and Lunsup denote the supervised and unsupervised loss, respectively. For

labeled data, we use the negative log-likelihood of gold programs; for unlabeled data, we

instead use the log marginal likelihood (MML) of all executable programs. Specifically,

they are defined as follows:

Lsup(x,y) =− log p(y|x,θθθ) (5.2)

Lunsup(x) =− log∑
y

R(y)p(y|x,θθθ) (5.3)

where R(y) is a binary reward function that returns 1 if y is executable and 0 otherwise.

In practice, this function is implemented by running a task-specific executor, e.g., a

SQL executor.

Another alternative to unsupervised loss is REINFORCE (Sutton et al., 1999), i.e.,

maximize the expected R(y) with respect to p(y|x,θ). However, as presented in Guu

et al. (2017), this objective usually underperforms MML, which is consistent with our

initial experiments.

5.1.2 Self-Training and Top-K MML

MML in Equation (5.3) requires marginalizing over all executable programs which is

intractable. Conventionally, we resort to beam search to explore the space of programs

and collect executable ones. To illustrate, we can divide the space of programs into four
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parts based on whether they are executable and observed, as shown in Figure 5.2a. For

example, programs in PSE ∪PSN are seen in the sense that they are retrieved by beam

search. Programs in PSE∪PUE are all executable, though only programs in PSE can be

directly observed.

Two common approximations of Equation (5.3) are Self-Training (ST) and Top-K

MML, and they are defined as follows:

LST(x,θθθ) =− log p(y∗|x,θθθ) (5.4)

Ltop-k(x,θθθ) =− log ∑
y∈PSE

p(y|x,θθθ) (5.5)

where y∗ denotes the most probable program, and it is approximated by the most

probable one from beam search.

It is obvious that both methods only exploit programs in PSE, i.e., executable pro-

grams retrieved by beam search. In cases where a parser successfully includes the

correct programs in PSE, both approximations should work reasonably well. However, if

a parser is uncertain and PSE does not contain the gold program, it would then mistakenly

exploit incorrect programs in learning, which is problematic.

A naive solution to improve Self-Training or Top-K MML is to explore a larger

space, e.g., increase the beam size to retrieve more executable programs. However, this

would inevitably increase the computation cost of learning. Empirically, we find that

increasing beam size, after it exceeds a certain threshold, is no longer beneficial for

learning. In this chapter, we instead propose better approximations without increasing

beam size.

5.2 Method

We first present a view of MML in Equation (5.3) from the perspective of posterior

regularization. This new perspective helps us derive three alternative approximations of

MML: Repulsion MML, Gentle MML, and Sparse MML.

5.2.1 Posterior Regularization

Posterior regularization (PR) allows to inject linear constraints into posterior distribu-

tions of generative models, and it can be extended to discriminative models (Ganchev

et al., 2010). In our case, we try to constrain the parser p(y|x,θ) to only assign prob-

ability mass to executable programs. Instead of imposing hard constraints, we softly
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penalize the parser if it is far away from a desired distribution q(y), which is defined as

Eq[R(y)] = 1. Since R is a binary reward function, q(y) is constrained to only place mass

on executable programs whose rewards are 1. We denote all such desired distributions

as the family Q .

Specifically, the objective of PR is to penalize the KL-divergence between Q and p,

which is:

JQ (θθθ) = DKL[Q ||p(y|x,θθθ)]

= min
q∈Q

DKL[q(y)||p(y|x,θθθ)]
(5.6)

By definition, the objective has the following upper bound:

J (θθθ,q) = DKL[q(y)||p(y|x,θθθ)]

=−∑
y

q(y) log p(y|x,θθθ)−H (q)
(5.7)

where q ∈ Q , H denotes the entropy. We can use block-coordinate descent, an EM

iterative algorithm to optimize it.

E : qt+1 = argmin
q∈Q

DKL[q(y)||p(y|x,θθθt)]

M : θθθ
t+1 = argmin

θθθ

−∑
y

qt+1(y)[log p(y|x,θθθ)]

During the E-step, we try to find a distribution q from the constrained set Q that is

closest to the current parser p in terms of KL-divergence. We then use q as a ‘soft label’

and minimize the cross-entropy between q and p during the M-step. Note that q is a

constant vector and has no gradient wrt. θθθ during the M-step.

The E-step has a closed-form solution:

qt+1(y) =

{ p(y|x,θθθt)
p(PSE∪PUE)

y ∈ PSE∪PUE

0 otherwise
(5.8)

where p(PSE ∪PUE) = ∑y′∈PSE∪PUE
p(y′|x,θθθt). qt+1(y) is essentially a re-normalized

version of p over executable programs. Interestingly, if we use the solution in the

M-step, the gradient wrt. θθθ is equivalent to the gradient of MML in Equation (5.3).

That is, optimizing PR with the EM algorithm is equivalent to optimizing MML. See

the proof blow.

Proof. Since q(y) is 0 for non-executable programs, we only need to compute it for
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executable programs in V . We need to solve the following optimization problem:

min
q
− ∑

y∈V
q(y) log p(y|x,θθθ)+ ∑

y∈V
q(y) logq(y)

s.t. ∑
y∈V

q(y) = 1

q(y)≥ 0

(5.9)

By solving it with KKT conditions, we can see that q(y) ∝ p(y|x,θθθ). Since q(y) needs

to sum up to 1, it is easy to obtain that q(y) = p(y|x,θθθ)
∑y∈V p(y|x,θθθ) .

The connection between EM and MML is not new, and it has been well-studied for

classification problems (Amini and Gallinari, 2002; Grandvalet and Bengio, 2005). In

our problem, we additionally introduce PR to accommodate the executability constraint,

and instantiate the general EM algorithm.

Although the E-step has a closed-form solution, computing q is still intractable

due to the large search space of executable programs. However, this PR view provides

new insight on what it means to approximate MML. In essence, conventional methods

can be viewed as computing an approximate solution of q. Specifically, Self-Training

corresponds to a delta distribution that only focuses on the most probable y∗.

qt+1
ST (y) =

{
1 y = y∗

0 otherwise
(5.10)

Top-K MML corresponds to a re-normalized distribution over PSE.

qt+1
top-k(y) =

{ p(y|x,θθθt)
p(PSE)

y ∈ PSE

0 otherwise
(5.11)

Most importantly, this perspective leads us to deriving three new approximations of

MML, which we collectively call X-PR.

5.2.2 Repulsion MML and Gentle MML

As mentioned previously, Self-Training and Top-K MML should be reasonable approxi-

mations in cases where gold programs are retrieved, i.e., they are in the seen executable

subset (PSE in Figure 5.2a). However, if a parser is uncertain, i.e., beam search cannot

retrieve the gold programs, exclusively exploiting PSE programs is undesirable. Hence,

we consider ways of taking unseen executable programs (PUE in Figure 5.2a) into ac-

count. Since we never directly observe unseen programs (PUE or PUN), our heuristics do



5.2. Method 87

not discriminate between executable and non-executable programs (PUE∪PUN). In other

words, upweighting PUE programs will inevitably upweight PUN.

Based on the intuition that the correct program is included in either seen exe-

cutable programs (PSE) or unseen programs (PUE and PUN), we can simply push a

parser away from seen non-executable programs (PSN). Hence, we call such method

Repulsion MML. Specifically, the first heuristic approximates Equation (5.8) as fol-

lows:

qt+1
repulsion(y) =

{ p(y|x,θθθt)
1−p(PSN)

y 6∈ PSN

0 otherwise
(5.12)

Another way to view this heuristic is that we distribute the probability mass from

seen non-executable programs (PSN) to other programs. In contrast, the second heuristic

is more ‘conservative’ about unseen programs as it tends to trust seen executable PSN

programs more. Specifically, the second heuristic uses the following approximations to

solve the E-step.

qt+1
gentle(y) =


p(PSE∪SN)

p(PSE)
p(y|x,θθθt) y ∈ PSE

p(y|x,θθθt) y ∈ PUE∪PUN

0 y ∈ PSN

(5.13)

Intuitively, it shifts the probability mass of seen non-executable programs (PSN)

directly to seen executable programs (PSE). Meanwhile, it neither upweights nor down-

weights unseen programs. We call this heuristic Gentle MML. Compared with Self-

Training and Top-K MML, Repulsion MML and Gentle MML lead to better exploration

of the program space, as only seen non-executable (PSN) programs are discouraged.

5.2.3 Sparse MML

Sparse MML is based on the intuition that in most cases there is only one or few correct

programs among all executable programs. As mentioned in Section 5.5, spurious

programs that are executable, but do not reflect the semantics of an utterance are

harmful. One empirical evidence from previous work (Min et al., 2019b) is that Self-

Training outperforms Top-K MML for weakly-supervised question answering. Hence,

exploiting all seen executable programs can be sub-optimal. Following recent work on

sparse distributions (Martins and Astudillo, 2016; Niculae et al., 2018), we propose

to encourage sparsity of the ‘soft label’ q. Encouraging sparsity is also related to the

minimum entropy and low-density separation principles which are commonly used in

semi-supervised learning (Grandvalet and Bengio, 2005; Chapelle and Zien, 2005).
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To achieve this, we first interpret the entropy term H in Equation (5.7) as a regular-

ization of q. It is known that entropy regularization always results in a dense q, i.e., all

executable programs are assigned non-zero probability. Inspired by SparseMax (Mar-

tins and Astudillo, 2016), we instead use L2 norm for regularization. Specifically, we

replace our PR objective in Equation (5.7) with the following one:

Jsparse(θθθ,q) =−∑
y

q(y) log p(y|s,θθθ)+ 1
2
||q||22 (5.14)

where q ∈ Q . Similarly, it can be optimized by the EM algorithm:

E : qt+1 = SparseMaxQ (log p(y|x,θθθt)) (5.15)

M : θθθ
t+1 = argmin

θθθ

−∑
y

qt+1(y)[log p(y|x,θθθ)] (5.16)

where the top-E-step can be solved by the SparseMax operator, which denotes the

Euclidean projection from the vector of logits log p(y|x,θθθt) to the simplex Q . Again,

we solve the E-step approximately. One of the approximations is to use top-k SparseMax

which constrain the number of non-zeros of q to be less than k. It can be solved by

using a top-k operator and followed by SparseMax (Correia et al., 2020). In our case,

we use beam search to approximate the top-k operator and the resulting approximation

for the E-step is defined as follows:

qt+1
sparse = SparseMaxy∈PSE

(
log p(y|x,θθθt)

)
(5.17)

Intuitively, qt+1
sparse occupies the middle ground between Self-Training (uses y∗ only)

and Top-K MML (uses all PSE programs). With the help of sparsity of q introduced by

SparseMax, the M-step will only promote a subset of PSE programs.

To summarize, we propose three new approximations of MML for learning from

executions. They are designed to complement Self-Training and Top- K MML via

discouraging seen non-executable programs and introducing sparsity. In the following

sections, we will empirically show that they are superior to Self-Training and Top-K

MML for semi-supervised semantic parsing. The approximations we proposed may

also be beneficial for learning from denotations in Chapter 4, and weakly supervised

question answering (Min et al., 2019b), but we leave this to future work.

5.3 Semantic Parsers

In principle, our X-PR framework is model-agnostic, i.e., it can be coupled with any

semantic parser for semi-supervised learning. In this chapter, we reuse RAT-SQL from
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Type of x Type of y Edge label Description

Entity Entity
RELATED-F there exists a property p s.t. (x, p,y) ∈K
RELATED-R there exists a property p s.t. (y, p,x) ∈K

Entity Property
HAS-PROPERTY-F there exists an entity e s.t. (x,y,e) ∈K
HAS-PROPERTY-R there exists an entity e s.t. (e,y,x) ∈K

Property Entity
PROP-TO-ENT-F there exists an entity e s.t. (y,x,e) ∈K
PROP-TO-ENT-R there exists an entity e s.t. (e,x,y) ∈K

Utterance Token Entity
EXACT-MATCH x and y are the same word

PARTIAL-MATCH token x is contained in entity y

Entity Utterance Token
EXACT-MATCH-R y and x are the same word

PARTIAL-MATCH-R token y is contained in entity x

Utterance Token Property
P-EXACT-MATCH x and y are the same word

P-PARTIAL-MATCH token x is contained in property y

Property Utterance Token
P-EXACT-MATCH-R y and x are the same word

P-PARTIAL-MATCH-R token y is contained in property y

Table 5.1: Relation types used for text-to-LF parsing. Suffix ‘F’ and ‘R’ denote forward

and reverse, respectively, to differentiate the directionality of the relation.

Chapter 3. We generalize the original RAT-SQL so that it can handle both text-to-LF

as well as text-to-SQL parsing. Central to the generalization is to generalize schema

encoding and schema linking in the context of text-to-SQL parsing to the following

notions:

• enviroment encoding: encoding enviroments, i.e., a knowledge base consisting of

a set of triples; a relational database represented by its schema

• enviroment linking: linking mentions to intended elements of environments, i.e.,

mentions of entities and properties of knowledge bases; mentions of tables and

columns of relational databases

Under this generalization, RAT-SQL introduced in Chapter 3 can be treated as a general

framework to handle enviroment encoding and linking. To adapt the framework to a

particular task, we only need to specify the task-dependent relations for enviroment en-

coding and linking. Specifically, the relations used for text-to-LF are shown in Table 5.1.

For text-to-SQL parsing, we reuse the relations defined in Chapter 3. The successful

generalization of RAT-SQL to text-to-LF, as we will show during the experiments,

fullfils our promise in Chapter 3 that RAT-SQL is indeed a general framework instead

of being specific to text-to-SQL parsing.
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5.4 Experiments

To evaluate X-PR, we present experiments on semi-supervised semantic parsing. We

also analyze how the objectives affect the training process.

5.4.1 Semi-Supervised Learning Setting

We simulate the setting of semi-supervised learning on standard text-to-LF and text-

to-SQL parsing benchmarks. Specifically, we randomly sample 30% of the original

training data as the labeled data, and use the rest 70% as the unlabeled data. For

text-to-LF parsing, we use the OVERNIGHT dataset (Wang et al., 2015), which has

eight different domains, each with a different size ranging between 801 and 4,419; for

text-to-SQL parsing, we use GEOQUERY (Zelle and Mooney, 1996) which contains

880 utterance-SQL pairs. The semi-supervised setting is very challenging as leveraging

only 30% of the original training data would result in only around 300 labeled examples

in four domains of OVERNIGHT and also in GEOQUERY.

Supervised Lower and Upper Bounds As baselines, we train two supervised mod-

els. The first one only uses the labeled data (30% of the original training data) and

discards the unlabeled data in the semi-supervised setting. We view this baseline as

a lower bound in the sense that any semi-supervised method is expected to surpass

this. The second one has extra access to gold programs for the unlabeled data in the

semi-supervised setting, which means it uses the full original training data. We view

this baseline as an upper bound for semi-supervised learning; we cannot expect to

approach it as the executability signal is much weaker than direct supervision. Our main

experiments aim to show how the proposed objectives can mitigate the gap between the

lower- and upper-bound baselines by utilizing 70% unlabeled data.

By comparing the performance of the second baseline (upper bound) with previ-

ous methods (Jia and Liang, 2016; Herzig and Berant, 2017; Su and Yan, 2017), we

can verify that our semantic parsers are state-of-the-art. See Table 5.2 for detailed

comparisons.

Semi-Supervised Training and Tuning We use stochastic gradient descent to opti-

mize Equation (5.1). At each training step, we sample two batches from the labeled and

unlabeled data, respectively. In preliminary experiments, we found that it is crucial to

pre-train a parser on supervised data alone; this is not surprising as all of the objectives
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(a) Average Ratios.

(b) Coverage of gold programs.

Figure 5.3: Effect of different learning objectives in terms of average ratios and coverage

(view in color).

for learning from execution rely on beam search which would only introduce noise with

an untrained parser. That is, λ in Equation (5.1) is set to 0 during initial updates, and is

switched to a normal value afterwards.

We leave out 100 labeled examples for tuning the hyperparameters. The hyperpa-

rameters of the semantic parser are only tuned for the development of the supervised

baselines, and are fixed for semi-supervised learning. The only hyperparameter we

tune in the semi-supervised setting is the λ in Equation (5.1), which controls how much

the unsupervised objective influences learning. After tuning, we use all the labeled

examples for supervised training and use the last checkpoints for evaluation on the test

set.
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5.4.2 Main Results

Our experiments evaluate the objectives presented in Figure 5.2 under a semi-supervised

learning setting. Our results are shown in Table 5.3.

Self-Training and Top-K MML First, Top-K MML, which exploits more executable

programs than Self-Training, does not yield better performance in six domains of

OVERNIGHT and GEOQUERY. This observation is consistent with Min et al. (2019b)

where Top-K MML underperforms Self-Training for weakly-supervised question an-

swering. Self-Training outperforms the lower bound in five domains of OVERNIGHT,

and on average. In contrast, Top-K MML obtains a similar performance to the lower

bound in terms of average accuracy.

X-PR Objectives In each domain of OVERNIGHT and GEOQUERY, the objective

that achieves the best performance is always within X-PR. In terms of average accuracy

in OVERNIGHT, all our objectives perform better than Self-Training and Top-K MML.

Among X-PR, Sparse MML performs best in five domains of OVERNIGHT, leading

to a margin of 4.2% compared with the lower bound in terms of average accuracy. In

GEOQUERY, Sparse MML also obtain best performance.

Repulsion MML, which is based on the same intuition of discouraging seen non-

executable programs, achieves a similar average accuracy to Gentle MML in OVERNIGHT.

In contrast, Gentle MML tends to perform better in domains whose parser are weak

(such as HOUSING, BLOCKS) indicated by their lower bounds. In GEOQUERY, Gentle MML

performs slightly better than Repulsion MML. Although it does not perform better

than Repulsion MML, it retrieves more accurate programs and also generates longer

programs (see next section for details).

To see how much labeled data would be needed for a supervised model to reach the

same accuracy as our semi-supervised models, we conduct experiments using 40% of

the original training examples as the labeled data. The supervised model achieves 72.6%

on average in OVERNIGHT, implying that ‘labeling’ 33.3% more examples would yield

the same accuracy as our best-performning objective (Sparse MML).

5.4.3 Analysis

To better understand the effect of different objectives, we conduct analysis on the

training process of semi-supervised learning. For the sake of brevity, we focus our
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analysis on the CALENDAR domain but have drawn similar conclusions for the other

domains.

Length Ratio During preliminary experiments, we found that all training objectives

tend to favor short executable programs for unlabeled utterances. To quantify this, we

define the metric of average ratio as follows:

ratio =
∑i ∑y∈PSE(xi) |y|
∑i |xi||PSE(xi)|

(5.18)

where PSE(xi) denotes seen executable programs of xi, |x|, |y| denotes the length of

an utterance and a program, respectively, and |PSE(xi)| denotes the number of seen

executable programs. Intuitively, average ratio reveals the range of programs that an

objective is exploiting in terms of length. This metric is computed in an online manner,

and xi is a sequence of data fed to the training process.

As shown in Figure 5.3a, Top-K MML favors shorter programs, especially during

the initial steps. In contrast, Repulsion MML and Gentle MML prefer longer programs.

For reference, we can compute the gold ratio by assuming PSE(xi) only contains the

gold program. The gold ratio for CALENDAR is 2.01, indicating that all objectives are

still preferring programs that are shorter than gold programs. However, by not directly

exploiting seen executable programs, Repulsion MML and Gentle MML alleviate this

issue compared with Top-K MML.

Coverage Next, we analyze how much an objective can help a parser retrieve gold

programs for unlabeled data. Since the orignal data contains the gold programs for the

unlabeled data, we ultilize them to define the metric of coverage as follows:

coverage =
∑i I[ŷi ∈ PSE(xi)]

∑i |xi|
(5.19)

where I is an indicator function, ŷi denotes the gold program of an utterance xi. Intu-

itively, this metric measures how often a gold program is captured in PSE. As shown

in Figure 5.3b, Self-Training, which only exploits one program at a time, is relatively

weak in terms of retrieving more gold programs. In contrast, Repulsion MML retrieves

more gold programs than the others.

As mentioned in Section 5.2.3, SparseMax can be viewed as an interpolation be-

tween Self-Training and Top-K MML. This is also reflected in both metrics: Sparse MML al-

ways occupies the middle-ground performance between ST and Top-K MML. Inter-

estingly, although Sparse MML is not best in terms of both diagnostic metrics, it still

achieves the best accuracy in this domain.
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5.5 Related Work

Semi-Supervised Semantic Parsing In the context of semantic parsing, semi-supervised

models using limited amounts of parallel data and large amounts of unlabeled data

treat either utterances or programs as discrete latent variables and induce them in the

framework of generative models (Kočiský et al., 2016; Yin et al., 2018). A challenge

with these methods is that (combinatorially) complex discrete variables make optimiza-

tion very hard, even with the help of variational inference. In this chapter, we seek to

directly constrain the discriminative parser with signals obtained from executions. Our

method can potentially be integrated into these generative models to regularize discrete

variables.

(Underspecified) Sequence-Level Rewards There have been attempts in recent

years to integrate sequence-level rewards into sequence-to-sequence training as a way

of accommodating task-specific objectives. For example, BLEU can be optimized for

coherent text generation (Bosselut et al., 2018) and machine translation (Wu et al., 2018)

via reinforcement learning or beam-search (Wiseman and Rush, 2016). In this chapter,

we resort to marginal likelihood training to exploit binary executability rewards for

semantic parsing (i.e., whether a program is executable or not), which has been shown

to be more effective than REINFORCE (Guu et al., 2017).

More importantly, our binary reward is underspecified, i.e., there exist many spurious

programs that enjoy the same reward as the gold program. This issue of learning

from underspecified rewards underlies many weakly-supervised tasks, e.g., learning

from denotations (Liang et al., 2013; Berant et al., 2013), weakly supervised question

answering (Min et al., 2019b).

Execution for Semantic Parsing Execution has been utilized in semantic pars-

ing (Wang et al., 2018) and the related area of program synthesis (Chen et al., 2018).

These approaches exploit the execution of partial programs to guide the search for

plausible complete programs. Although partial execution is feasible for SQL-style

programs, it cannot be trivially extended to general meaning representation (e.g., logical

forms). In this chapter, we explore a more general setting where execution can be only

obtained from complete programs.
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5.6 Summary

To take adavantage of a large amount of unlabeled utterances in the semi-supervised

setting, we propose to learn a semantic parser from the weak yet freely available

executability signals. Due to the large search space of executable programs, conventional

approximations of MML training, i.e, Self-Training and Top-K MML, are often sub-

optimal. We propose a set of alternative objectives, namely X-PR, through the lens of

posterior regularization. Empirical results on semi-supervised learning show that X-PR

can help a parser achieve substantially better performance than conventional methods,

further bridging the gap between semi-supervised learning and supervised learning. The

success signifies that we can indeed reduce human annotation effort by exploiting a

large amount of unlabeled utterances if they are readily available.

In this and the previous chapter, we explore the direction of utilizing weak yet

cheap (or even free) learning signals in the form of denotations or unlabeled examples,

to ultimately reduce the annotation effort for building semantic parsers. from the

methodology perspective, we present a two-stage latent-alignment parser and specialized

training objectives, respectively, to effectively take advantage of these weak learning

signals. Note that these two methodologies are orthogonal, and in principle can be

combined for better generalization. For example, we can train a latent-alignment

parser with the specialized training objectives for learning from unlabeled examples.

In the next chapter, we will switch to the setting where we have labeled examples (i.e.,

annotated programs paired with utterances), and ask the question that if we can afford

to annotate examples, (to what extent) will the resulting parser trained on them cover

the space of all possible utterances?





Chapter 6

Systematic Generalization

Previous chapters explore settings that deviate from the conventional supervised in-

domain setting, including cross-domain, weakly-supervised, or semi-supervised settings.

In this chapter, we revisit the conventional setting to investigate the more fundamental

question of linguistic coverage, i.e., to what extent can a semantic parser cover all

the possible meanings of user utterances? Typically, this question is trivial if we have

access to the distribution of real-life user utterances, e.g., relying on real-life users for

collecting data, since in this case we can evaluate linguistic coverage by assessing our

parsers on random samples from the distribution. In practice, however, it is very likely

that we cannot get access to real-life users, especially in cases where a semantic parser is

developed on a new domain for a new application. To handle this, we consider relaxing

the assumption of knowing the distribution of user utterance by the following ones: 1)

meanings are compositional in that a complex meaning is usually composed of one or

multiple sub-meanings; 2) the training data contains data that cover all the possible

sub-meanings, but not all the ways of combining them. Under these assumptions,

we investigate a concrete question to probe linguistic coverage: if the training data

cover all basic sub-meanings, to what extent can the resulting trained parser cover all

possible combinations of these sub-meanings. In a rather abstract sense, instead of

assuming access to the distribution of meanings directly, we know the distribution of

basic sub-meanings in the absence of the distribution of the ways that combine these

sub-meanings. To get an intuition, consider examples shown in Figure 6.1. During

training, we assume that a parser knows how to process meanings regarding length and

longest river. We hope it can generalize to a new meaning that involves both length and

longest river.

Apart from the motivation on assessing linguistic coverage, the problem under

99
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Training Examples
what is the length of the colorado river ?

len( river( riverid ( ‘colorado‘ ) ) )

what is the longest river ?

longest( river( all ) ) )

what is the length of the longest river ?

len( longest( river( all ) ) )

Test Example

Figure 6.1: A semantic parser needs to generalize to test examples which contain

segments from multiple training examples (shown in green and blue).

the relaxed assumptions also has other motivations from the machine learning and

cognitive science perspective. Humans can easily understand novel combinations of

sub-meanings if exposed to basic sub-meanings before, e.g., it would be easy for a

human to address the test example in Figure 6.1. However, unlike humans, conventional

sequence-to-sequence (seq2seq) models which are widely used in NLP and semantic

parsing, fail to generalize systematically (Bahdanau et al., 2019; Lake and Baroni, 2018;

Loula et al., 2018), i.e., correctly interpret sentences representing novel combinations

of concepts seen in training. From the machine learning standpoint, this problem can be

framed as an out-of-distribution generalization problem: how can a parser systematically

generalize in the setting where the distribution on combinations of sub-meanings of test

data is divergent from that of training data. In the rest of the chapter, we will focus on

improving systematic generalization of a parser with the aim at improving linguistic

coverage.

Our goal is to provide a mechanism for encouraging systematic generalization

in seq2seq models. To get an intuition of our methodology, we consider again the

examples shown Figure 6.1. To process the test utterance, the learner needs to first

decompose it into two segments previously observed in training (shown in green

and blue), and then combine their corresponding program fragments to create a new

program. Current seq2seq models fail in this systematic generalization setting Finn et al.
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(2017); Keysers et al. (2019). In contrast, traditional grammar formalisms decompose

correspondences between utterances and programs into compositional mappings of

substructures (Steedman, 2000), enabling grammar-based parsers to recombine rules

acquired during training, as needed for systematic generalization. Grammars have

proven essential in statistical semantic parsing in the pre-neural era Zettlemoyer and

Collins (2012); Wong and Mooney (2006), and have gained renewed interest now as

a means of achieving systematic generalization Herzig and Berant (2021); Shaw et al.

(2020). However, grammars are hard to create and maintain (e.g., requiring grammar

engineering or grammar induction stages) and do not scale well to NLP problems

beyond semantic parsing (e.g., machine translation). In this chapter, we argue that the

key property of grammar-based models, giving rise to their improved ood performance,

is that a grammar implicitly encodes alignments between input and output segments.

For example, in Figure 6.1, the expected segment-level alignments are ‘the length →
len’ and ‘the longest river → longest(river(all))’. Instead of developing

a full-fledged grammar-based method, we directly model segment-level alignments

as structured latent variables. The resulting alignment-driven seq2seq model remains

end-to-end differentiable, and, in principle, applicable to any sequence transduction

problem.

Segment-Level Alignments Modeling segment-level alignments requires simultane-

ously inducing a segmentation of input and output sequences and discovering correspon-

dences between the input and output segments. While segment-level alignments have

been previously incorporated in neural models (Yu et al., 2016; Wang et al., 2017b),

to maintain tractability, these approaches support only monotonic alignments. The

monotonicity assumption is reasonable for certain tasks (e.g., summarization), but it is

generally overly restrictive (e.g., consider semantic parsing and machine translation). To

relax this assumption, we complement monotonic alignments with an extra reordering

step. That is, we first permute the source sequence so that segments within the reordered

sequence can be aligned monotonically to segments of the target sequence. Coupling

latent permutations with monotonic alignments dramatically increases the space of

admissible segment alignments.

The space of general permutations is exceedingly large, so, to allow for efficient

training, we restrict ourselves to separable permutations (Bose et al., 1998). We model

separable permutations as hierarchical reordering of segments using permutation trees.

This hierarchical way of modeling permutations reflects the hierarchical nature of
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language and hence is arguably more appropriate than ‘flat’ alternatives (Mena et al.,

2018). Interestingly, recent studies (Steedman, 2021; Stanojević and Steedman, 2018)

demonstrated that separable permutations are sufficient for capturing the variability

of permutations in linguistic constructions across natural languages, providing further

motivation for our modeling choice.

Simply marginalizing over all possible separable permutations remains intractable.

Instead, inspired by recent work on modeling latent discrete structures (Corro and Titov,

2019; Fu et al., 2020), we introduce a continuous relaxation of the reordering problem.

The key ingredients of the relaxation are two inference strategies: marginal inference,

which yields the expected permutation under a distribution; MAP inference, which

returns the most probable permutation. In this chapter, we propose efficient dynamic

programming algorithms to perform exact marginal and MAP inference with separable

permutations, resulting in effective differentiable neural modules producing relaxed

separable permutations. By plugging this module into an existing module supporting

monotonic segment alignments (Yu et al., 2016), we obtain an end-to-end differentiable

seq2seq model, supporting non-monotonic segment-level alignments.

Contributions In this chapter, we revisit the conventional supervised in-domain

setting, to investigate ways of improving the linguistic coverage of a semantic parser.

We approach the problem from the perspective of incorporating structured inductive

biases into a parser:

• we propose a seq2seq model for semantic parsing that accounts for latent non-

monotonic segment-level alignments;

• we design novel and efficient algorithms for exact marginal and MAP inference

with separable permutations, allowing for end-to-end training using a continuous

relaxation.

This model is general and applicable to other seq2seq NLP problems such as

machine translation. Apart from experiments on semantic parsing, we also show its

effectiveness on machine translation.

In favor of a general NLP model, the framework developed in this chapter does

not follow the framework of semantic parsers discussed in Chapter 2, e.g., it does

not take the grammar of target programs into account for semantic parsing. We leave

the direction of exploring structured latent alignments that accommodate program

grammars as future work.

As an orthogonal direction to upgrading model architectures for systematic gener-
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alization, we also explore how to upgrade the training algorithm of standard seq2seq

models. Analogous to DG-MAML algorithm presented in Chapter 3 for domain gen-

eralization, we recently find in Conklin et al. (2021) that meta-learning can also be

effectively employed to boost systematic generalization. As we mentioned in Sec-

tion 1.3.3, injecting model and learning bias are two kinds of methodologies we use for

addressing generalization challenges of semantic parsing, and this work Conklin et al.

(2021) makes the exploration in this regime complete.

6.1 Background and Related Work

6.1.1 Systematic Generalization

Human learners exhibit systematic generalization, which refers to their ability to gener-

alize from training data to novel situations. This is possible due to the compositionality

of natural languages - to a large degree, sentences are built using an inventory of primi-

tive concepts and finite structure-building mechanisms (Chomsky, 1965). For example,

if one understands ‘John loves the girl’, they should also understand ‘The girl loves

John’ (Fodor and Pylyshyn, 1988). This is done by ‘knowing’ the meaning of individual

words and the grammatical principle of subject-verb-object composition. As pointed

out by Goodwin et al. (2020), systematicity entails that primitive units have consistent

meaning across different contexts. In contrast, in seq2seq models, the representations

of a word are highly influenced by context (see experiments in Lake and Baroni (2018)).

This is also consistent with the observation that seq2seq models tend to memorize large

chunks rather than discover underlying compositional principles (Hupkes et al., 2019).

The memorization of large sequences lets the model fit the training distribution but

harms out-of-distribution generalization.

6.1.2 Discrete Alignments as Conditional Computation Graphs

Latent discrete structures enable the incorporation of inductive biases into neural models

and have been beneficial for a range of problems. For example, input-dependent module

layouts (Andreas et al., 2016) or graphs (Norcliffe-Brown et al., 2018) have been

explored in visual question answering. There is also a large body of work on inducing

task-specific discrete representations (usually trees) for NL sentences (Yogatama et al.,

2016; Niculae et al., 2018; Havrylov et al., 2019; Corro and Titov, 2019). The trees are

induced simultaneously with learning a model performing a computation relying on the
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tree (typically a recursive neural network (Socher et al., 2011)), while optimizing a task-

specific loss. Given the role the structures play in these approaches – i.e., defining the

computation flow – we can think of the structures as conditional computation graphs.

In this chapter, we induce discrete alignments as conditional computation graphs to

guide seq2seq models. Given a source sequence x with n tokens and a target sequence y

with m tokens, we optimize the following objective:

XXX = Encodeθ(x) Lθ,φ(x,y) =− logEpφ(MMM|XXX)pθ(y|XXX ,MMM) (6.1)

where Encode is a function that embeds x into XXX ∈ Rn×h with h being the hidden size,

MMM ∈ {0,1}n×m is the alignment matrix between input and output tokens. In this frame-

work, alignments MMM are separately predicted by pφ(MMM|XXX) to guide the computation

pθ(y|XXX ,MMM) that maps x to y. The parameters of both model components (φ and θ) are

disjoint.

Relation to Attention Standard encoder-decoder models (Bahdanau et al., 2015)

rely on continuous attention weights i.e., MMM[:, i] ∈4n−1 for each target token 1≤ i≤
m. Discrete versions of attention (aka hard attention) have been studied in previous

work (Xu et al., 2015; Deng et al., 2018) and show superior performance in certain tasks.

In the discrete case MMM is a sequence of m categorical random variables. Though discrete,

the hard attention only considers word-level alignments, i.e., assumes that each target

token is aligned with a single source token. This is a limiting assumption; for example,

in traditional statistical machine translation, word-based models (e.g., (Brown et al.,

1993)) are known to achieve dramatically weaker results than phrase-based models (e.g.,

(Koehn et al., 2007)). In this chapter, we aim to bring the power of phrase-level (aka

segment-level) alignments to neural seq2seq models. 1

6.2 Latent Segment Alignments via Separable Permuta-

tions

Our method integrates a layer of segment-level alignments with a seq2seq model. The

architecture of our model is shown in Figure 6.2. Central to this model is the alignment

network, which decomposes the alignment problem into two stages: (i) input reordering

1One of our models (see Section 6.2.2) still has a flavor of standard continuous attention in that it
approximates discrete alignments with continuous expectation.
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count exclude state_all loc 1 river_all 

how many states do not have rivers

Structured Reordering

Monotonic Decoding

original encoding
reordered encoding

Figure 6.2: The architecture of our seq2seq model for semantic parsing. After encoding

the input utterance, our model permutes the input representations using our reordering

module. Then, the reordered encodings will be used for decoding the output program in

a monotonic manner.

and (ii) monotonic alignment between the reordered sequence and the output. Formally,

we decompose the alignment matrix from Eq 6.1 into two parts:

MMM = MMMpeMMMmo (6.2)

where MMMpe ∈ Rn×n is a permutation matrix, and MMMmo ∈ Rn×m represents monotonic

alignments. With this decomposition, we can rewrite the objective in Eq 6.1 as follows:

Lθ,φ(x,y) =− logEpφ(MMMpe|x)Ep
φ′(MMMmo|MMMpeXXX)pθ(y|MMMpeXXX ,MMMmo) (6.3)

where MMMpeXXX denotes the reordered representation. With a slight abuse of notation,

φ now denotes the parameters of the model generating permutations, and φ′ denotes

the parameters used to produce monotonic alignments. Given the permutation ma-

trix MMMpe, the second expectation Epφ(MMMmo|MMMpeXXX)pθ(y|MMMpeXXX ,MMMmo), which we denote as

pθ,φ′(y|MMMpeXXX), can be handled by existing methods, such as SSNT (Yu et al., 2016) and

SWAN (Wang et al., 2017b). In the rest of the chapter, we choose SSNT as the module

for handling monotonic alignment.2 We can rewrite the objective we optimize in the

following compact form:

Lθ,φ,φ′(x,y) =− logEpφ(MMMpe|x)pθ,φ′(y|MMMpeXXX) (6.4)

6.2.1 Structured Latent Reordering by Binary Permutation Trees

Inspired by Stanojević and Steedman (2018) and Steedman (2021), we restrict word

reorderings to separable permutations. Formally, separable permutations are defined

2 In our initial experiments, we found that SWAN works as well as SSNT but is considerably slower.
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in terms of binary permutation trees (aka separating trees (Bose et al., 1998)), i.e.,

if a permutation can be represented by a separating tree, it is separable. A binary

permutation tree over a permutation of a sequence 1 . . .n is a binary tree in which each

node represents the ordering of a segment i . . . j; the children exhaustively split their

parent into sub-segments i . . .k and k+1 . . . j. Each node has a binary label that decides

whether the segment of the left child precedes that of the right child.

the girl saw the hedgehog

saw the girl the hedgehog

re-ordered sentence

X1,2 X2,3 X3,4 X4,5 X5,6

X1,3 X4,6

X1,4

X1,6

Figure 6.3: The tree represents the reordered sentences ‘saw the girl the hedgehog’

where4,∧ denotes Inverted and Straight, respectively.

Separable Permutations Represented by BTG Bracketing transduction grammar (BTG,

Wu, 1997), which is proposed in the context of machine translation, is the corresponding

grammar to represent binary permutation trees. Specifically, we use a monolingual

variant of the original BTG, which is a context-free grammar (CFG) with only one

terminal X and three production rules:
X

Straight−−−−→ X X

X Inverted−−−−→ X X

X → w

where w ∈ Σ denotes terminal words. The original BTG is a synchronous grammar

describing the generative process of bilingual strings (i.e., input and output). In contrast,

the variant we use only describes the generative process of monolingual strings. This

variant differs from conventional CFG in that the first two production rules are labeled

with orientations (i.e., Straight or Inverted) with respect to the ordering of the target

language.

Separable permutations can be fully covered by BTG as each separable permutation

can be represented by at least one BTG derivation tree. 3 Hence, the problem of learning

to reorder an input string can be cast as a parsing problem where we need to learn how

to generate a BTG parse given an input string.
3Note that the mapping is not bijective, i.e., a separable permutation could correspond to multiple

derivation trees. Another variant of BTG (Figure 10 of Wu (1997)) can be used to resolve the ambiguity
and guarantee bijectivity.
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This hierarchical approach to generating separable permutations reflects the com-

positional nature of language, and, thus, appears more appealing than using ‘flat’

alternatives (Mena et al., 2018; Grover et al., 2019; Cuturi et al., 2019). Moreover, with

BTGs, we can incorporate segment-level features to model separable permutations, and

design tractable algorithms for learning and inference. However, separable permuta-

tions may not capture all the needed reorderings for all seq2seq tasks. For example,

Stanojević and Steedman (2018) point out that BTG cannot capture all the expected

reorderings for machine translation of any language pair. One possible way to address

this issue is to stack more than one separable permutations (i.e., MMMpe = MMMpe1MMMpe2 . . .

) to cover more kinds of permutations beyond separable permutations. We leave the

exploration for future work.

Probabilistic Separable Permutations by BTG Parsing We aim to learn a proba-

bilistic BTG parser that assigns high probabilities to derivations that encode the right

reordering. We use a discriminative parsing strategy (Durrett and Klein, 2015) where

the scores of each rule is conditioned on the whole input string. This strategy has been

found to be empirically better in terms of parsing performance compared to conventional

PCFGs whose rule scores are independent of input strings. The disrcriminative parser

relies on the following anchored rules:

Si, j,k : Xk
i

Straight−−−−→ X j
i Xk

j

Ii, j,k : Xk
i

Inverted−−−−→ X j
i Xk

j

Ti : X i+1
i → xi

where Xk
i is the anchored non-terminal covering the segment from i to k (excluding k).

The first two rules decide whether to keep or invert two segments when constructing a

larger segment; the last rule states that every word xi in an utterance is associated with a

non-terminal X i+1
i . An example is shown in Figure 6.3. Through this example, we note

that the first two rules only signify which segments to inverse; an additional process of

interpreting the tree (i.e., performing actual actions of keeping or inverting segments) is

needed to obtain the permutated sequence.

By assigning a score to each anchored rule using segment-level features, we obtain

a distribution over all possible derivations, and use it to compute the objective in Eq 6.4.

pφ(D|x) =
∏R∈D fφ(R)

Z(x,φ)
, Lθ,φ,φ′(x,y) =− logEpφ(D|x)pθ,φ′(y|MMMD

peXXX) (6.5)

where fφ is a score function assigning a (non-negative) weight to an anchored rule R ∈
{S ,I ,T }, Z(x,φ) = ∑D′∏R∈D′ fφ(R) is the partition function, which can be computed
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using the inside algorithm, MMMD
pe is the permutation matrix corresponding to the derivation

D.

The resulting probabilistic BTG does not have generative power anymore and is

merely a module to assign preference to BTG parses. In this probabilistic BTG, the

weight is only normalized at the derivation level. As we will see in Algorithm 2, we

are interested in normalizing the weight of production rules and converting it to an

equivalent BTG with probabilistic rule scores, following Smith and Johnson (2007), so

that the probability of a derivation can be computed as follows:

pφ(D|x) = ∏
R∈D

Gφ(R) (6.6)

where Gφ(R) is the weight of the production rule R under the normalized BTG.

The challenge with optimizing the objective in Eq 6.5 is that the search space

of possible derivations is exponential, making the estimation of the gradients with

respect to parameters of the reordering component (φ) non-trivial. We now present two

differentiable surrogates we use.

6.2.2 Soft Reordering: Computing Marginal Permutations

The first strategy is to use the deterministic expectation of permutations to softly reorder

a sentence, analogous to the way standard attention approximates categorical random

variables. Specifically, we use the following approximation:

MMM′pe = Epφ(D|x)MMM
D
pe

Lθ,φ,φ′(x,y)≈− log pθ,φ′(y|MMM′peXXX)

where MMM′pe is the marginal permutation matrix, and it can be treated as structured at-

tention (Kim et al., 2017). Methods for performing marginal inference for anchored

rules, i.e., computing the marginal distribution of production rules are well-known in

NLP (Manning and Schutze, 1999). However, we are interested in the marginal permu-

tation matrix (or equivalently the expectation of the matrix components) as the matrix

is the data structure that is ultimately used in our model. As a key contribution of this

work, we propose an efficient algorithm to exactly compute the marginal permutation

matrix using dynamic programming.

In order to compute the marginal permutation matrix we need to marginalize over the

exponentially many derivations of each permutation. We propose to map a derivation of

BTG into its corresponding permutation matrix in a recursive manner. Specifically, we
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Algorithm 2 Dynamic programming for computing marginals and differentiable sam-

pling of permutation matrix wrt. a parameterized grammar
Input: Gφ(R): probablity of an anchored rule R

sampling: whether perform sampling

1: for i := 1 to n do
2: EEE i+1

i = 111

3: end for
4: for w := 2 to n do . width of spans

5: for i := 1 to n−w+1 do . start point

6: k := i+w . end point

7: if sampling then
8: Ĝφ(R) = s argmax(Gφ(R)) . differentiable sampling

9: else
10: Ĝφ(R) = Gφ(R) . computing marginal

11: end if
12: for j := i+1 to k−1 do
13: EEEk

i += Ĝφ(Si, j,k)(EEE
j
i ⊕EEEk

j)

14: EEEk
i += Ĝφ(Ii, j,k)(EEE

j
i 	EEEk

j)

15: end for
16: end for
17: end for
18: return EEEn+1

1

first associate word i with an identity permutation matrix MMMi+1
i = 111; then we associate

Straight and Inverted rules with direct ⊕ and skew 	 sums of permutation matrices,

respectively:

AAA⊕BBB =

[
AAA 000

000 BBB

]
AAA	BBB =

[
000 AAA

BBB 000

]
For example, the permutation matrix of the derivation tree shown in Figure 6.3 can be

obtained by:

MMM6
1 =

((
(MMM2

1⊕MMM3
2)	MMM4

3
)
⊕ (MMM5

4⊕MMM6
5)

)
(6.7)

Intuitively, the permutation matrix of long segments can be constructed by composing

permutation matrices of short segments. Motivated by this, we propose a dynamic

programming algorithm, which takes advantage of the observation that we can reuse the

permutation matrices of short segments when computing permutation matrices of long
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segments, as shown in Algorithm 2. While the above equation is defined over discrete

permutation matrices encoding a single derivation, the algorithm applies recursive rules

to expected permutation matrices. Central to the algorithm is the following recursion:

EEEk
i = ∑

i< j<k
Gφ(Si, j,k)(EEE

j
i ⊕EEEk

j)+Gφ(Ii, j,k)(EEE
j
i 	EEEk

j) (6.8)

where EEEk
i is the expected permutation matrix for the segment from i to k, Gφ(R) is the

probability of employing the production rule R, defined in Eq 6.6. Overall, Algorithm 2

is a bottom-up method that constructs expected permutation matrices incrementally in

Step 13 and 14, while relying on the probability of the associated production rule.

6.2.3 Hard Reordering: Gumbel-Permutation by Differentiable Sam-

pling

During inference, for efficiency, it is convenient to rely on the most probable derivation

D′ and its corresponding most probable y:

argmax
y

pθ,φ′(y|MMMD′
peXXX) (6.9)

where D′ = argmaxD pφ(D|x). The use of discrete permutations MMMD′
pe during inference

and soft reorderings during training lead to a training-inference gap which may be

problematic. Inspired by recent Gumbel-Softmax operator (Jang et al., 2016; Maddison

et al., 2016) that relaxes the sampling procedure of a categorical distribution using the

Gumbel-Max trick, we propose a differentiable procedure to obtain an approximate

sample MMMD
pe from p(D|x). Concretely, the Gumbel-Softmax operator relaxes the perturb-

and-MAP procedure (Papandreou and Yuille, 2011), where we add noises to probability

logits and then relax the MAP inference (i.e., argmax in the categorical case); we

denote this operator as s argmax. In our structured case, we perturb the logits of the

probabilities of production rules Gφ(R), and relax the structured MAP inference for our

problem. Recall that p(D|x) is converted to a normalized BTG, and MAP inference is

algorithmically similar to marginal inference. Intuitively, for each segment, instead of

marginalizing over all possible production rules in marginal inference, we choose the

one with the highest probability (i.e., a local MAP inference with categorical random

variables) during MAP inference. By relaxing each local MAP inference with Gumbel-

Softmax (Step 8 of Algorithm 2), we obtain a differentiable sampling procedure. 4 We
4If we change s argmax with argmax in Step 8 of Algorithm 2, we will obtain the algorithm for exact

MAP inference.
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choose Straight-Through Gumbel-Softmax so that the return of Algorithm 2 is a discrete

permutation matrix, and in this way we close the training-inference gap faced by soft

reordering.

Summary We propose two efficient algorithms for computing marginals and obtaining

samples of separable permutations with their distribution parameterized via BTG. In

both algorithms, the normalized BTG plays an important role of decomposing a global

problem into sub-problems, which explains why we convert p(D|x) into a normalized

BTG in Eq 6.6. Relying on the proposed algorithms, we present two relaxations of the

discrete permutations that let us induce latent reorderings with end-to-end training. We

refer to the resulting system as ReMoto, short for a seq2seq model with Reordered-then-

Monotone alignments. Soft-ReMoto and Hard-ReMoto denote the versions which use

soft marginal permutations and hard Gumbel permutations, respectively.

SSNT for Monotonic Alignments We briefly explain SSNT, the module we use on

top of our reordering module for monotonically generating output. Intuitively, SSNT

can be viewed as a finite state transducer (FST) that alternates between consuming an

input segment and generating an output segment. The alignments (MMMmo in Equation 6.3)

between the reordered input and output strings is operationalized by a sequence of

local decisions of alternating. Central to SSNT is the dynamic programming algorithm

that efficiently enumerates all possible sequences of local decisions, as the monotonic

alignments are unknown and treated as discrete latent variables. That SSNT consumes

input strings in a left-to-right, segment-by-segment manner provides a strong inductive

bias that the input of SSNT should have monotonic correspondence with respect to

the output. When coupled with our reordering module, the joint model, when trained

end-to-end, learns to induce the right reordered input based on a given input and output

pair. Intuitively, two modules will learn to adjust to each other: our reordering model

needs to generate reordered input strings that SSNT finds suitable in terms of monotonic

generation.

Different from our reordering module, segments are not first-class objects during

modeling in SSNT. In our reordering module, permutation matrices MMMpe are constructed

by hierarchically reordering input segments. In contrast, MMMmo modeled by SSNT is

realized by a series of token-level decisions, e.g., whether to keep consuming the next

input token. Thus, properties of segments (e.g., segment-level features) are not fully

exploited in SSNT. In this sense, one potential way to further improve ReMoto is to



112 Chapter 6. Systematic Generalization

explore better alternatives to SSNT that can treat segments as first-class objects as well.

Reordering in Previous Work In traditional statistical machine translation (SMT),

reorderings are typically handled by a distortion model (e.g., Al-Onaizan and Papineni,

2006) in a pipeline manner. Neubig et al. (2012), Nakagawa (2015) and Stanojević and

Sima’an (2015) also use BTGs for modeling reorderings. Stanojević and Sima’an (2015)

go beyond binarized grammars, showing how to support 5-ary branching permutation

trees. Still, they assume the word alignments have been produced on a preprocessing

step, using an alignment tool Och and Ney (2003). Relying on these alignments, they

induce reorderings. Inversely, we rely on latent reordering to induce the underlying

word and segment alignments. Modeling segments provides a strong inductive bias,

reflecting the intuition that sequence transduction in NLP can be largely accomplished

by manipulations at the level of segments. In contrast, there is no explicit notion of

segments in conventional seq2seq methods.

Reordering modules have been previously used in neural models, and can be as-

signed to the following two categories. First, reordering components (Huang et al.,

2017; Chen et al., 2019) were proposed for neural machine translation. However, they

are not structured or sufficiently constrained in the sense that they may produce invalid

reorderings (e.g., a word is likely to be moved to more than one new position). In

contrast, our module is a principled way of dealing with latent reorderings. Second, the

generic permutations (i.e., one-to-one matchings or sorting), though having differen-

tiable counterparts (Mena et al., 2018; Grover et al., 2019; Cuturi et al., 2019), do not

suit our needs as they are defined in terms of tokens, rather than segments. For com-

parison, in our experiments, we design baselines that are based on Gumbel-Sinkhorn

Network (Mena et al., 2018), which is used previously in NLP (e.g., Lyu and Titov

(2018)).

6.3 Experiments

First, we consider two diagnostic tasks where we can test the neural reordering module

on its own. Then we further assess our general seq2seq model ReMoto on two real-world

NLP tasks.
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Dataset Input Output

Arithmetic ((1+9)∗ ((7+8)/4)) ((19+)((78+)4/)∗)
SCAN-SP jump twice after walk around left thrice after (twice (jump), thrice(walk (around, left)))

GeoQuery how many states do not have rivers ? count(exclude(state(all), loc 1(river(all))))

Table 6.1: Examples of input-output pairs for parsing tasks.

Arithmetic SCAN-SP
Model IID LEN IID LEN

Seq2Seq 100.0 0.0 100.0 13.9

LSTM-based Tagging 100.0 20.6 100.0 57.7

Sinkhorn-Attention Tagging 99.5 8.8 100.0 48.2

Soft-ReMoto 100.0 86.9 100.0 100.0

- with shared parameters 100.0 40.9 100.0 100.0

Hard-ReMoto 100.0 83.3 100.0 100.0

Table 6.2: Accuracy (%) on the arithmetic and SCAN-SP tasks.

6.3.1 Diagnostic Tasks

Arithmetic We design a task of converting an arithmetic expression in infix format

to the one in postfix format. An example is shown in Table 6.1. We create a synthetic

dataset by sampling data from a PCFG. In order to generalize, a system needs to

learn how to manipulate internal sub-structures (i.e., segments) while respecting well-

formedness constraints. This task can be solved by the shunting-yard algorithm but we

are interested to see if neural networks can solve it and generalize ood by learning from

raw infix-postfix pairs. For standard splits (IID), we randomly sample 20k infix-postfix

pairs whose nesting depth is set to be between 1 and 6; 10k, 5k, 5k of these pairs are

used as train, dev and test sets, respectively. To test systematic generalization, we create

a Length split (LEN) where training and dev examples remain the same as IID splits,

but test examples have a nesting depth of 7. In this way, we test whether a system can

generalize to unseen longer input.

SCAN-SP We use the SCAN dataset (Lake and Baroni, 2018), which consists of

simple English commands coupled with sequences of discrete actions. Here we use

the semantic parsing version, SCAN-SP (Herzig and Berant, 2021), where the goal

is to predict programs corresponding to the action sequences. An example is shown
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in Table 6.1. As in these experiments our goal is to test the reordering component

alone, we remove parentheses and commas in programs. For example, the program

after (twice (jump), thrice(walk (around, left))) is converted to a se-

quence: after twice jump thrice walk around left. In this way, the resulting

parentheses-free sequence can be viewed as a reordered sequence of the NL utterance

‘jump twice after walk around left thrice’.5 Apart from the standard split (IID, aka

simple split (Lake and Baroni, 2018)), we create a Length split (LEN) where the training

set contains NL utterances with maximum length 5, while utterances in the dev and test

sets have minimum length of 6.6

Baselines and Results In both diagnostic tasks, we use ReMoto with a trivial mono-

tonic alignment matrix MMMmo (an identity matrix) in Eq 6.3. Essentially, ReMoto becomes

a sequence tagging model. We consider three baselines: (1) vanilla Seq2Seq models

with Luong attention (Luong et al., 2015); (2) an LSTM-based tagging model which

learn the reordering implicitly, and can be viewed as a version ReMoto with a trivial MMMpe

and MMMmo; (3) Sinkhorn Attention that replaces the permutation matrix of Soft-ReMoto

in Eq 6.4 by Gumbel-Sinkhorn networks (Mena et al., 2018).

We report results by averaging over three runs in Table 6.2. In both datasets, almost

all methods achieve perfect accuracy in IID splits. However, baseline systems cannot

generalize well to the challenging LEN splits. In contrast, our methods, both Soft-

ReMoto and Hard-ReMoto perform very well on LEN splits, surpassing the best baseline

system by large margins (> 40%). The results indicate that ReMoto, particularly its

neural reordering module, has the right inductive bias to learn reorderings. We also

test a variant Soft-ReMoto where parameters θ,φ with shared input embeddings. This

variant does not generalize well to the LEN split on the arithmetic task, showing that it

is beneficial to split models of the ‘syntax’ (i.e., alignment) and ‘semantics’, confirming

what has been previously observed (Havrylov et al., 2019; Russin et al., 2019).

6.3.2 Semantic Parsing

Our second experiment is on semantic parsing where ReMoto models the latent align-

ment between NL utterances and their corresponding programs. We use GeoQuery

5The grammar of the programs is known so we can reconstruct the original program from the
intermediate parentheses-free sequences using the grammar.

6 Since we use the program form, the original length split (Lake and Baroni, 2018), which is based on
the length of action sequence, is not very suitable in our experiments.
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EN ZH DE
Model IID TEMP LEN IID TEMP LEN IID TEMP LEN

Seq2Seq 75.7 38.8 21.8 72.5 25.4 19.8 56.1 18.8 15.2

Syntactic Attention (Russin et al., 2019) 74.3 39.1 18.3 70.2 27.9 18.7 54.3 19.3 14.2

SSNT (Yu et al., 2016) 75.3 38.7 19.1 71.6 23.8 17.8 55.2 19.8 14.1

Soft-ReMoto 74.5 39.3 19.8 73.4 30.3 17.3 55.8 19.5 13.4

Hard-ReMoto 75.2 43.2 23.2 74.3 45.7 22.3 55.6 22.3 16.6

Table 6.3: Exact-match accuracy (%) on three splits of the multilingual GeoQuery dataset.

Numbers underlined are significantly better than others (p-value ≤ 0.05 using the paired

permutation test).

dataset (Zelle and Mooney, 1996) which contains 880 utterance-programs pairs. The

programs are in variable-free form (Kate et al., 2005); an example is shown in Table 6.1.

Similarly to SCAN-SP, we transform the programs into parentheses-free form which

have better structural correspondence with utterances.7 An example of such parentheses-

free form is shown in Figure 6.2. Apart from the standard version, we also experiment

with the Chinese and German versions of GeoQuery (Jones et al., 2012; Susanto and Lu,

2017). Since different languages exhibit divergent word orders (Steedman, 2021), the

results in the multilingual setting will tell us if our model can deal with this variability.

In addition to standard IID splits, we create a LEN split where the training ex-

amples have parentheses-free programs with a maximum length 4; the dev and test

examples have programs with a minimum length 5. We also experiment with the TEMP

split (Herzig and Berant, 2021) where training and test examples have programs with

disjoint templates.

Baselines and Results Apart from conventional seq2seq models, for comparison,

we also implemented the syntactic attention Russin et al. (2019). Our model ReMoto is

similar in spirit to the syntactic attention, ‘syntax’ in their model (i.e., alignment) and

‘semantics’ (i.e., producing the representation relying on the alignment) are separately

modeled. In contrast to our structured mechanism for modeling alignments, their

syntactic attention still relies on the conventional attention mechanism. We also compare

with SSNT, which can be viewed as an ablated version of ReMoto by removing our

reordering module.

Results are shown in Table 6.3. For the challenging TEMP and LEN splits, our

best performing model Hard-ReMoto achieves consistently stronger performance than
7 Again, we can reconstruct the original programs based on the grammar.
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seq2seq, syntactic attention and SSNT. Thus, our model bridges the gap between con-

ventional seq2seq models and specialized state-of-the-art grammar-based models Shaw

et al. (2020); Herzig and Berant (2021).8

6.3.3 Machine Translation

Our final experiment is on small-scale machine translation tasks, where ReMoto models

the latent alignments between parallel sentences from two different languages. To probe

systematic generalization, we also create a LEN split for each language pair in addition

to the standard IID splits.

English-Japanese We use the small en-ja dataset extracted from TANKA Corpus.

The original split (IID) has 50k/500/500 examples for train/dev/test with lengths 4-16

words.9 We create a LEN split where the English sentences of training examples have a

maximum length 12 whereas the English sentences in dev/test have a minimum length

13. The LEN split has 50k/538/538 examples for train/dev/test, respectively.

Chinese-English We extract a subset from FBIS corpus (LDC2003E14) by filtering

English sentences with length 4-30. We randomly shuffle the resulting data to obtain an

IID split which has 141k/3k/3k examples for train/dev/test, respectively. In addition,

we create a LEN split where English sentences of training examples have a maximum

length 29 whereas the English sentences of dev/test examples have a length 30. The

LEN split has 140k/4k/4k examples as train/dev/test sets respectively.

Baselines and Results In addition to the conventional seq2seq, we compare with

the original SSNT model which only accounts for monotonic alignments. We also

implemented a variant that combines SSNT with the local reordering module (Huang

et al., 2017) as our baseline to show the advantage of our structured ordering module.

Results are shown in Table 6.4. Our model, especially Hard-ReMoto, consistently

outperforms other baselines on both splits. In EN-JA translation, the advantage of our

best-performance Hard-ReMoto is slightly more pronounced in the LEN split than in the

IID split. In ZH-EN translation, while SSNT and its variant do not outperform seq2seq

in the LEN split, ReMoto can still achieve better results than seq2seq. These results

8 NQG (Shaw et al., 2020) achieves 35.0% in the English LEN, and SBSP (Herzig and Berant,
2021) (without lexicon) achieves 65.9% in the English TEMP in execution accuracy. Both models are
augmented with pre-trained representations (BERT).

9https://github.com/odashi/small_parallel_enja

https://github.com/odashi/small_parallel_enja
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t

EN-JA ZH-EN
IID LEN IID LEN

Seq2Seq 35.6 25.3 21.4 18.1

SSNT (Yu et al., 2016) 36.3 26.5 20.5 17.3

Local Reordering (Huang et al., 2017) 36.0 27.1 21.8 17.8

Soft-ReMoto 36.6 27.5 22.3 19.2

Hard-ReMoto 37.4 28.7 22.6 19.5

Table 6.4: BLEU scores on the EN-JA and ZH-EN translation.

original input: 在1
in 美国

2
usa 哪些

3
which 州

4
state 与

5 最长6
longest 的

7 河流8
river 接壤

9
border

reordered input: 州4
state 接壤

9
border 最长

6
longest 的

7 河流8
river 与

5 哪些3
which 美国

2
usa 在

1
in

prediction: state4 next to 29 longest river6,7,8 loc 2 countryid ENTITY5,3,2

ground truth: state next to 2 longest river loc 2 countryid ENTITY

original input: according1 to2 the3 newspaper4 ,5 there6 was7 a8 big9 fire 10 last11 night12

reordered input: according1 to2 the3 newspaper4 ,5 night12 last11 big9 fire10 a8 there6 was7

prediction: 新によれば、1,2,3,4,5 昨夜12 大11,9 火事10 があ8,6 った7

ground truth: 新によると昨夜大火事があった

Table 6.5: Output examples of Chinese semantic parsing and English-Japanese trans-

lation. For clarity, the input words are labeled with position indices, and, for semantic

parsing, with English translations. A prediction consists of multiple segments, each

annotated with a superscript referring to input tokens.

show that our model is better than its alternatives at generalizing to longer sentences for

machine translation.

Interpretability Latent alignments, apart from promoting systematic generalization,

also lead to better interpretability as discrete alignments reveal the internal process for

generating output. For example, in Table 6.5, we show a few examples from our model.

Each output segment is associated with an underlying rationale, i.e. a segment of the

reordered input.
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6.4 Summary

To improve systematic generalization for linguistic coverage, we propose a new seq2seq

model for semantic parsing that accounts for latent segment-level alignments. Central

to this model is a novel structured reordering module which is coupled with existing

modules to handle non-monotonic segment alignments. We model reorderings as

separable permutations and propose an efficient dynamic programming algorithm to

perform marginal inference and sampling. It allows latent reorderings to be induced

with end-to-end training. This model is general and applicable to other seq2seq NLP

problems such as machine translation. Empirical results on both synthetic and real-

world datasets show that our model can achieve better systematic generalization than

conventional seq2seq models.
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Conclusions

In this thesis, we presented several latent-alignment semantic parsers and specialized

training objectives to address the generalization challenges that arise in an array of

settings inspired by practical scenarios. Such settings extend the conventional semantic

parsing setting along three dimensions: the shift from in-domain to cross-domain setting,

from strong to weak (and even no) supervision, from compositionally in-distribution to

out-of-distribution settings. Our findings in the thesis can be summarized as follows:

• Structural model biases introduced by the proposed latent-alignment models are

highly beneficial in such practical and challenging settings. By capturing the

structured correspondences between natural language utterances and programs,

latent-alignment models can take advantage of weak supervisions (chapter 4), gen-

eralize well to unseen domains (Chapter 3) and novel natural language utterances

with known atoms (Chapter 6).

• In contrast to improving model architectures, learning biases introduced by the

proposed specialized training objectives, are model-agnostic and surprisingly

powerful ways of injecting prior knowledge. We design meta-learning inspired

objectives for domain generalization (Chapter 3) and compositional generalization

(Chapter 6), and a posterior-regularization inspired objective for learning from

executions (Chapter 5).

In general, we can conclude that model biases and learning biases are two effective ways

of augmenting and improving models of semantic parsing. The former one has been

studied for decades since the pre-neural era, from rule-based to grammar-based, then

to neural-based models. The latent-alignment models we proposed aim at effectively

mixing symbolic grammar-based models and neural seq2seq models. In contrast, the

119
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latter notion of learning biases is relatively new to this field, but we show that it is very

promising and appealing in many respects. First, they are model-agnostic, implying that

you can plug in a general-purpose seq2seq model without much of an engineering effort.

Second, such training objectives seem complementary to model biases if we were to

inject them together. For instance, in Chapter 3, we show that meta-learning objective

can still further boost the performance of our state-of-the-art alignment-based parser.

We believe that the general idea of learning biases for neural models can be extended to

other related NLP tasks such as knowledge-based question answering.

The inductive biases address the data underspecification problem i.e., many models

are compatible with the given data, but only some of them can generalize to new data.

Apart from the two kinds of inductive biases above, which are ways to restrict and

regularize the model, we have also explored ways of manipulating data i.e., injecting

prior knowledge through data augmentation (Wang et al., 2021d). In real-life scenarios,

it might be desirable to combine those strategies together to maximize performance.

7.1 Future Work

Though this thesis explores a set of practical settings that extend the standard semantic

parsing settings inspired by real-life scenarios, it does not consider many other complex

settings such as conversational semantic parsing (Hemphill et al., 1990; Yu et al.,

2019b,a), interactive semantic parsing (Li and Jagadish, 2014; Gur et al., 2018; Yao

et al., 2019a), and mulitilingual semantic parsing (Jones et al., 2012; Susanto and Lu,

2017; Sherborne et al., 2020). We will discuss some problems in these settings, where

applying or extending our methodology is possible.

Conversational Semantic Parsing When facing a complex goal of querying struc-

tural data, users tend to achieve it via multiple thematically related questions, instead

of asking it in one shot. In such conversational settings, a parser would need to revise

or refer to programs generated in previous turns (Andreas et al., 2020). As a result,

the structural correspondences of interest for semantic parsing not only exist among

natural language utterances, programs and data schema, but also have dependencies

on previously generated programs. Hence, to extend our methodology of modeling

latent alignments, a structural mechanism of explicitly modeling the latent revision or

reference would be necessary for such settings.
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Interactive Semantic Parsing The implicit assumption made in typical settings of

semantic parsing is that a user utterance can be mapped to an executable program,

i.e., there is a clear one-to-one mapping at utterance level. However, in practice, users

may ask incomplete or ambiguous questions which can have zero or multiple correct

interpretations. In the interactive setting, a natural language interface is supposed to

ask clarification questions in the presence of ambiguity or incompleteness. Uncertainty

is often used as an informative signal (Yao et al., 2019b) to detect such undesirable

questions. We speculate that latent-alignment models could potentially provide a better

estimation of uncertainty compared with standard seq2seq models as vague questions

presumably do not exhibit structural alignments, thus do not have a corresponding

program with high probability. Moreover, the latent alignments induced by our model

might serve as rationales when a system asks clarification questions, which would make

it easier for users to understand the motivation of automatically generated clarification

questions. Overall, latent-alignment models seem to an appealing family for interactive

semantic parsing and require further investigation.

Mulitilingual Semantic Parsing In Chapter 6, we show that our latent-alignment

models can generalize across different languages when labeled examples are available

in each language. However, this might not be practical as it would be extremely

expensive to annotate examples for each existing language. A more economical setting

is to transfer semantic parsers trained in English, which has rich resources in many

aspects, to other languages. As utterances in different languages would result in different

structural correspondences (e.g., due to different word orders), it would be interesting

to investigate how to transfer knowledge learned from one latent-alignment model for

language A to another language B; whether there exists a single centralized model that

can explicitly captures structural correspondences for all languages. Moreover, our

meta-learning objective can be potentially extended to multilingual semantic parsing

based on the intuition that improving a semantic parser on language A should also be

beneficial for a related language B.
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